FUNCTORIAL RELATIONSHIPS
BETWEEN QH*(G/B) AND QH*(G/P)

NAICHUNG CONAN LEUNG AND CHANGZHENG LI

ABSTRACT. We give a natural filtration F on QH*(G/B), which respects the
quantum product structure. Its associated graded algebra Gr” (QH*(G/B))
is isomorphic to the tensor product of QH*(G/P) and a corresponding graded
algebra of QH*(P/B) after localization. When the quantum parameter goes
to zero, this specializes to the filtration on H*(G/B) from the Leray spectral
sequence associated to the fibration P/B — G/B — G/P.

1. INTRODUCTION

Let G be a simply-connected complex simple Lie group, B be a Borel subgroup
and P D B be a parabolic subgroup of G. The natural fibration P/ B—G/B—G/P
of homogeneous varieties gives rise to a Z2-filtration F on H*(G/B) over Q (or C)
such that Gr” (H*(G/B)) = H*(P/B)® H*(G/ P) as graded algebras by the Leray-
Serre spectral sequence. Given another parabolic subgroup P’ with B C P’ C P,
we obtain the corresponding natural fibration P'/B — P/B — P/P’. Combining
it with the former one, we obtain a Z3*-filtration on H*(G/B). We can continue
this procedure to obtain a (maximal) Z"!-filtration.

In the present paper, we study the small quantum cohomology rings QH*(G/P)’s
of homogeneous varieties G/P’s, which are deformations of the ring structures
on H*(G/P)’s by incorporating genus zero 3-pointed Gromov-Witten invariants
of G/P’s into the cup product. We show the “functorial relationships” between
QH*(G/B) and QH*(G/P) in the sense that the Z"T!filtration on H*(G/B) can
be generalized to give a Z"T!-filtration on QH*(G/B) and there exist canonical
maps between quantum cohomologies, in analog with the classical ones. We begin
with a toy example to illustrate our results.

Example 1.1. When G = SL(3,C), G/B = {V; < Vo < C® | dim¢V; = 1,
1 = 1,2} =: Fls is a complete flag variety. Given a maximal parabolic subgroup
P O B, we have P/B = P! and G/P = P? together with a natural fibration

P! < Fe3 =5 P2, The quantum cohomology ring QH*(G/B) has a basis con-
sisting of Schubert classes o“’s over Q[q1,qz], indexed by the Weyl group W =
S3 = {1, 51, 52, 5182, 5251, 515251 }. To obtain the Z*-filtration F on QH*(G/B), we
need a deformation gr of the classical grading map which satisfies gr(qiqso™) =
agr(qr) + bgr(qz) + gr(c™). In this example, gr is given explicitly by Table 1.
This determines a Z*-filtration F = {F¢}eczz on QH*(G/B). The main point
is this filtration respects the quantum multiplication, i.e. FeFq C Feyq. Indeed,
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TABLE 1. gr(¢fqbo™) = (i,j) with —2<i<4,0<;<6

40 qf | qfo | 4o | P o™ | ot | ¢Rqeo | ¢S
3 || ot | o | ot | gPgs | 720 | g0 | qfgs o™
2 G 010% | o | qugao®t | 1geo®*T | qugeo® S | s
1 || o5 | o251 | gsises Qe | G@eo® | e | qeic
0 1 o2 os152 q20_51 q20_5251 q20_515251 (hq%
-1 0 0 0 g2 G202 qa0 152 450
—2 0 0 0 0 0 0 %
‘ i 0 1 2 3 4 5 6

this can be easily checked with the following well-known quantum products for Fls3:
0.81 * 0.81 20.8281 + q1, o5 % gS152 — 0.8182817 0.81 * 0.8281 :qlo.S27
052 %02 =052 4 gy, 052 K528 = oS82 52 4 5152 — g 551
012 % o195 = 0%, 0192 % 09152 = u0%251, g% % 0°1%2 =1 0% %% + qqq9,
o251 4 gS15251 :qquO.Sl7 5251 % g5251 = (o152, 052 % gS15251 :q20.5251 + q1qo,
0.81 * 0.82 20.8182 + 0.82817 0.8182 * 0.8281 = q142, 0.818281 * 0.818281:q1q2 0.81* 0.82.

This Z2-filtration of the algebra structure on QH*(G/B) is a q-deformation of
the classical one on H*(G/B), which comes from the Leray spectral sequence. Due
to the existence of such a filtration, we can easily check that there are algebra
isomorphisms ¢ : QH*(G/B)/T — QH*(P/B) and ¢ : QH*(G/P) — A/J,
where A = szo Flo,j) is a subalgebra of QH*(G/B), J = Fo,—1) is an ideal
of A and T is the ideal in QH*(G/B) spanned by those q{q5c™ ’s with their grad-
ings (dy,ds) satisfying do > 0. Here ¢ sends q¢{q5c® + T to y? where qiq5o®
is the (unique) one among such expressions with its grading equal to (4,0), and
Y sends x7 to the (unique) qfqho” € QH*(G/B) whose grading equals (0,j),
in which we have taken the well-known isomorphisms QH*(P/B) = Qly] and
QH*(G/P) = Q[z]. In particular, QH*(G/P) is the quotient of the subalgebra
A generated by {q20°', 02,143, g2} by the ideal J = qa.A. (We remark that in this
case QH*(G/B) itself is generated by {o°*,0%2,q1,q2}.)

These algebra isomorphisms generalize the classical ones in an obvious way,
namely A, J and I are q-deformations of A := n*(H*(G/P)), J =0 and I =
Q{o®2, 0152 %251 5515251} regpectively.

All the above descriptions for G = SL(3,C) will be generalized to arbitrary
complex semi-simple Lie groups. For simplicity, we assume P/B is irreducible.
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(Note that any homogeneous variety splits into a direct product of irreducible ones.)
All the results can be easily generalized for reducible P/B’s and we will describe
such generalizations in section 5. Note that P/B is again a complete flag variety,
isomorphic to G’/ B’ for some other complex simple Lie group G’. Then we denote
by r the rank of G’, which depends only on P/B. Since we exclude the trivial cases,
namely P equals B or G, we always have r = 1 for G = SL(3,C).

In general, we consider a special iterated fibration {P;_1/Py — P;/Py —
Pj/Pj_l};Ié in which P;’s are parabolic subgroups with B = Py C P, C --- C
P, = P C G = P.;;. Consequently, we obtain a canonical Z"+!-filtration on
H*(G/B). Note that QH*(G/B) also has a natural basis of Schubert classes c*’s
over Q[q]. As we will see in section 2.2, there exists a grading map gr giving gradings
gr(gaa™) € Z™1 for the (Q-)basis gxo™’s. The Peterson-Woodward comparison
formula in [32] (Proposition 2.1) plays a key role in defining gr. It is the only known
formula that characterizes the relations of genus zero 3-pointed Gromov-Witten in-
variants between GG/B and a general G/P explicitly. gr defines a Z"+!-filtration
F = {Fa}aezr+1 of subspaces in QH*(G/B), generalizing Example 1.1. The next
theorem says that F respects the quantum product structure.

Theorem 1.2. QH*(G/B) is a Z" ' -filtered algebra with filtration F.
We can obtain several important consequences as below.

Theorem 1.3. The vector subspace L, spanned by those gyo™ ’s with their gradings
(d1,-++ ,dyrt1) satisfying dy41 > 0, is an ideal of QH*(G/B). Furthermore, there
is a canonical algebra isomorphism

QH*(G/B)/T = QH*(P/B).

Since QH*(G/B) has a Z""!-filtration F, we obtain an associated Z"!-graded
algebra Gr* (QH*(G/B)) = @,cpr+1 GrL, where Gr] := F,/ Up<a Fp. For each
j, we denote Gr{;) (QH*(G/B)) == @;cz Gri};j.
Theorem 1.4. For each 1 < j <, there exists a canonical algebra isomorphism,

U, QH*(P;/Pj—1) — Gr) (QH"(G/B)).
Furthermore if P/B = F{, 1, then there exists a canonical algebra isomorphism,
U,y QH*(G/P) = Gr{l,1)(QH"(G/B)).
As a consequence, we have the following results for any G.

Theorem 1.5. Suppose P/B = Fl.y1. Then there exists a subalgebra A of
QH*(G/B) together with an ideal J of A, such that QH*(G/P) is canonically
isomorphic to A/ J as algebras.

Theorem 1.6. Suppose P/B = F{,.1. Then as graded algebras Gr* (QH*(G/B))
is isomorphic to QH*(PY) @ --- ® QH*(P") ® QH*(G/P) after localization.

We should point out that the requirement “P/B 2 F{,,1” in Theorem 1.5 and
Theorem 1.6 is not a strong assumption, because both of theorems can be easily
generalized to the case “P/B is isomorphic to a product of F/0};’s” (see section 5). As
a consequence, all G/P’s for G being of A-type or Ga-type satisfy this assumption.
Furthermore for each remaining type, more than half of the homogeneous varieties
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G/ P’s also satisfy this. (We could also show Theorem 1.5 holds for any G/P with
G = Sp(2n,C).)

As we saw in Example 1.1, the gradings of elements in QH*(F¥3) only form
a proper sub-semigroup S of Z2, which looks like stairs, so that the Z2-filtration
comes from an S-filtration. In general, the Z"t!-filtration comes from a similar
filtration. For this reason, we need localization to obtain the analog of graded-
algebra isomorphism (in Theorem 1.6). In section 4, we will restate theorems 1.4,
1.5 and 1.6 more concretely. As we will see later, all the relevant maps generalize
the classical ones in an obvious way, as in Example 1.1.

Our results relate the quantum cohomologies of the total space and the base
space of the fibration P/B — G/B — G/P. Similar structures occur when
one studies the relationships of J-functions between an abelian quotient and a
nonabelian quotient. Such relations were studied by Bertram, Ciocan-Fontanine
and Kim in [3] and [4]. (See also [33].) There were also relevant studies by Liu-Liu-
Yau [23] and Paksoy [27] by using mirror principle [22] .

Let us mention two more important problems on the study of QH*(G/P), for
which our theorems may also be helpful. One can see the excellent survey [9]
and references therein for more details on the developments. As mentioned before,
the (small) quantum cohomology ring QH*(G/P) has a basis of Schubert classes
o"’s over Q[q]. In order to understand QH*(G/P), one would like to have (i) a
(good) presentation of the ring structure on QH*(G/P) and (ii) a (nice) formula (or
algorithm) for the quantum Schubert structure constants ijf;j\” ’s in the quantum
product o %o =37 NP qx,0®. For classical cohomology H*(G/P), these
natural and important problems have been solved in [5] for (i) and in [17] and [7]
for (ii). However, for quantum cohomology QH*(G/P), the answer to (i) is only
known in certain cases, for instance when G is of A-type (see [15], [1]) or P = B
is a Borel subgroup [16]. For problem (ii), there were early studies for a few cases,
including complex Grassmannians (see the survey [9]) and complete flag varieties
of A-type [8], besides the quantum Chevalley formula [11] which works for all cases.
Recently, Mihalcea [26] has given an algorithm and the authors ([20], [21]) have
given a combinatorial formula for these structure constants.

All these problems were discussed in the unpublished work [28] by Dale Peter-
son. In [32], Woodward proves a comparison formula of Peterson. The Peterson-
Woodward comparison formula explicitly characterizes the relations of the quan-
tum Schubert structure constants between QH*(G/P) and QH*(G/B). However,
it does not tell us the relations of the algebra structures between them. Along
Peterson’s approach, Lam and Shimozono [18] show that the torus-equivariant
extension of QH*(G/P) is isomorphic to a quotient of the torus-equivariant ho-
mology of a based loop group after localization. In [29], K. Rietsch discusses the
relationships between Peterson’s work and mirror symmetry. In [28], Peterson
had also claimed there was an analogous isomorphism for the (un-iterated) fibra-
tion P/B — G/B — G/P in terms of torus-equivariant homology of based loop
groups after localization. We were motivated by his claim and the results by Wood-
ward and Lam-Shimozono. We succeeded in obtaining natural generalizations of
the classical isomorphisms. It is interesting to compare our results with Peterson’s
claim. It is also interesting to compare our Theorem 1.5 with Theorem 10.16 of
[18] by Lam and Shimozono. As commented by Thomas Lam, our results should
be related to the discussions in section 10.4 of [18].
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We hope our results could be used to solve problem (i) by combining with Kim’s
early work [16], where a nice presentation of the ring structure on the complexified
quantum cohomology QH*(G/B) was given.

This paper is organized as follows. In section 2, we define a grading map and
prove our main result, Theorem 1.2, assuming the Key Lemma. Then we devote
the whole section 3 to the proof of the Key Lemma. In section 4, we prove the
remaining theorems discussed as above. In section 5, we show how to generalize
our results to the general case when P/ B is reducible. Finally in section 6, we give
an appendix which deals with exceptional cases in the proof of the Key Lemma. Our
proofs are combinatorial in nature. We hope to find nice geometrical explanations
of them later.

Acknowledgements. The authors thank Baohua Fu, Bumsig Kim, Thomas Lam,
Augustin-Liviu Mare and Leonardo Constantin Mihalcea for useful discussions. We
also thank the referee for valuable suggestions.

2. A FILTRATION ON QH*(G/B)

2.1. Preliminaries. We recall some basic notions and fix the notations. See for
example [12], [13] for more details on Lie theory.

Let G be a simply-connected complex simple Lie group of rank n, B C G be
a Borel subgroup and P D B be a proper parabolic subgroup of G. Then P
corresponds canonically to a proper subset Ap of A. (In particular, B corre-
sponds to the empty subset ().) Fix a basis of simple roots A = {ay, -+ ,a,}
(with respect to (G,B)). Let b denote the corresponding Cartan subalgebra,
then h* = @, Ca;. Let {of, -+, )} C b be the fundamental coroots and
{x1,""* ,Xn} C b* be the fundamental weights. For any 1 < 4,5 < n, we have
(xi, oz}/> = 0;,; with respect to the natural pairing (-,-) : h* x h — C. Furthermore,
we have p = %Z'yePﬁ v =Y, Xi. Foreach 1 < i < n, the simple reflection
5; = Sq, acts on h and h* by

5i(A) = A= (a, N, for A€ b s:(8) = B— (B,a) )y, for B € b*.
The Weyl group W, which is generated by {si,---,s,}, acts on h and h* and
preserves the natural pairing. The root system is given by R = W-A = RTU(—R™),
where Rt = RN @?:1 Z>oa is the set of positive roots. Thus each root v € R is
given by v = w(«;) for some w € W and 1 < i < n. Then we define vV = w(a})
and s, = ws;w™" € W, which is independent of the expressions of .

The length £(w) of w € W (with respect to A) is defined by £(1) £ 0 and £(w) £
min{k | w = s, -+ 8, } for w # 1. An expression w = s;, - - - s;, is called reduced
if £ = ¢(w). Let P = Px denote the (standard) parabolic subgroup corresponding
to a subset A C A, W denote the subgroup generated by {s; | o € A} and
wp denote the longest element in Wys. For A C A with P := Px, we denote
WII; = {w e Will(w) < {(v), Vv € wWp}. Each coset in Ws/Wp has a unique
(minimal length) representative in W}; C Wp C W. In particular, we have P = G
and Wg = W, and simply denote W7 := WC{? and w := wg.

The (co)homology of a homogeneous variety X = G/P has an additive basis
of Schubert (co)homology classes indexed by W¥: H,(X,Z) = @, ey r Zow,
H*(X,Z) = @, ey r Zo" with (0", 0,) = b4, for any u,v € WP [2]. In particular,
Hy(X,7Z) = @aieA\AP Zos,. Set Q¥ =@, Zoy and Qp = P, ca, Loy . Then
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we can identify Hy(X,Z) with QV/Q} canonically, by mapping ZajeA\AP a;os,
to Ap =3, cavan ajef + Qp. For each a; € A\ Ap, we introduce a formal
variable Qo +QY- For such A\p, we denote ¢», = HajeA\AP quY+Q;,'

Let Mg, (X, Ap) be the moduli space of stable maps of degree \p € Hz(X,Z)
of m-pointed genus zero curves into X [10], and ev; denote the i-th canonical evalu-
ation map ev; : Mo m (X, A\p) — X given by ev;([f : C — X;p1,- ,pm]) = f(pi)-
The genus zero Gromov-Witten invariant for vq1,-+- ,v, € H*(X) = H*(X,Q) is
defined as In map (715 s Ym) = fﬂo,m(X,Ap) evi(m)U---UevE (Vm). The (small)
quantum product for a,b € H*(X) is a deformation of the cup product, defined
by ax b £ ZuGWP,)\peHg(X,Z) To32p (aabv (Uu)’i)auq)\Pv where {(Uu)’i | u € WP}
are the elements in H*(X) satisfying [ (6")* Uc" = dy,, for any u,v € W¥. The
quantum product x is associative, making (H*(X) ® Q[q],*) a commutative ring.
This ring is denoted as QH*(X) and called the (small) quantum cohomology
ring of X. The same Schubert classes 0% = " ® 1 form a basis for QH*(X) over
Q[q] and we write

u v o w,Ap w
o' *xo" = E Ny TP anpo”.
weWP ApeQY/QY

The coefficients ijf;j\” ’s are called the quantum Schubert structure constants. They
generalize the well-known Littlewood-Richardson coefficients when X = Gr(k,n+1)
is a complex Grassmannian. It is also well-known that the quantum Schubert
structure constants are non-negative.

When P = B, we have Q% = 0, Wp = {1} and W = W. In this case, we simply
denote A = Ap and ¢; = Gay - A combinatorial formula for N;’f’v)"s has been given
by the authors recently [20]. As a consequence, we can obtain the combinatorial
formula for N¥;}’s for general G/P, due to the following comparison formula.

Proposition 2.1 (Peterson-Woodward comparison formula [32]; see also [18]).
(1) Let \p € QV/Q}. Then there is a unique A\p € Q" such that \p = A\g+Q}
and (a,\g) € {0,—1} for alla € R} (= R* NP Zay).
(2) For every u,v,w € WF, we have

aj cEAp

NWAP _ Nwaw/,)\B
U w,v ’
where w' = wpr with Apr = {a; € Ap | (o, Ag) = 0}.

Thanks to Proposition 2.1, we have canonical representatives of W/Wp x QY /QY
in W x QY with respect to the pair (A, Ap), which is a generalization of the case

W/Wp S WP c W. We will discuss them in more details in the next subsection.
When v is a simple reflection s;, we have the following (Peterson’s) quantum
Chevalley formula for o*  o*¢, which has been proved earlier in [11].

Proposition 2.2 (Quantum Chevalley Formula for G/B). Foru € W,1 <i <mn,
o % g% = Z<Xi7 ,yv>0.u37 + Z<Xiv ’7v>q’yv0'us7,
¥ ¥

where the first sum is over roots v in R for which (usy) = ¢(u) + 1, and the
second sum is over roots v in R for which l(usy) = l(u) + 1 — (2p,v").
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Note that we have fixed a base A = {aq, -+ ,a,}. As a subset of A, we can
write Ap = {a;,, - ,@;, }. Then giving an order on Ap is equivalent to giving a
permutation of Ap. Once such a permutation T is given, we denote ag = T(o;)
for each 1 < j < r and then naturally rewrite the remaining simple roots so
that A = {af, - ,al,}. In the present paper, we always keep the information on
the order, whenever referring to (Ap,T) or (an ordered set) Ap = (af, -+, o).
Furthermore for convenience, we simply denote a;’s by «;’s. (In other words, we
take T = ida, under the assumption in the beginning that Ap = {ay, -+, .}
satisfies certain properties on its associated Dynkin diagram.)

Notation 2.3. Let (Ap,Y) be given with Ap = (a1, -, ).
P1(7)

For any integers k,m with 1 <k < m <r, we denote Upeom) 7= SonSagir " S -
If k > m, then we just denote u[AkF;)’q({) = 1. Furthermore, we define u[k’;’l(]m) =
u[Akf;’l(}” and denote u; Ar(m) u@ffﬁi my for i =10,1,---,m. Whenever there is
no confusion, we szmply denote
Sj = Sa;, [k)m] U[Akf:@(]r) and uz('m) = uiAPy(m)'

Let Aj = {ai,--- ,a;} and Pj := Pa; for each 1 < j <r. Denote Py = B and
Pii=G. A decomposition of w € W associated to (Ap,T) is an expression
W = VUpt1 V1 wztth€W7 Y foreach 1 < i <r+1, whereWP" Wp,. By
the iterated ﬁbratwn associated to (Ap,T), we mean the famzly of fibrations
of homogeneous varieties, given by {Pj_1/Py — P;/Py — P;/Pj_1 ;Ié

We denote by Dyn(A’) the Dynkin diagram associated to a base A’.

- 0—o0

Example 2.4. Suppose Dyn(Ap) is given by o) a» o - Consider the iterated

fibration {P;_1/Py — P;/Py — P;/P;_ 1} T2 associated to Ap = (ayg,--- ).
Then we have P.i1/P. = G/P and P;/P;_1 =P? for each 1 < j < r. Furthermore,
the natural inclusion {aq,- -+ ,ar—1} < Ap (or SL(r,C) — SL(r+ 1,C)) induces
a canonical embedding P,_1/B = Fl,_1 — F{, = P/B of complete flag varieties,
which maps a flag Vi < --- < Vp_1 inC" to the flag V1 <--- < V,_1 < C" in C"T1,

Due to the following well-known lemma (see e.g. [14]), we obtain Corollary 2.6.

Lemma 2.5. Let v € RT and w = s;, - -+ i, be a reduced expression of w € W.
(1) w e WP if and only if w(a) € R for any a € Ap.
(2) If b(wsy) < L(w), then w(y)e—R™ and there is a unique 1 <k</{ such that
Sig "t SigSy = Sigg 0 Sk and 7y = Si,Sip_y - Sigt1 (ctiy ).

Furthermore for 1 < j <n, l(ws;) = l(w) —1 if and only if w(c;) € —R™T.

- S

Corollary 2.6. For eachw € W, there exists a unique decomposition w = vpy41 -+ - V1
associated to Ap = (o, -+ , o). Furthermore, we assume that Dyn({a1, -, am})

is given by a7 as  om » Where m < r. Then for each 1 < j < m, £(v;) =1, if

(J)

and only if v; = ) (In particular, the expression uij) itself is reduced.)

Proof. The former is also well-known (see e.g. [14]). The latter statement is a

direct consequence of Lemma 2.5, by noting |W L '=j+1and u(]) x ,u§j) are

distinct elements of Wp, for which (1) of Lemma 2.5 can be applied. g
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The following lemma should also be well-known.

Lemma 2.7. Let ACACA, P= Pz and P = Pjx. Let w = vu with w € Wp
and v = 8, -+ - 8;,, being a reduced expression of v € WIJ;. For any 1 <j <m, we
have v’ := si,,, -+~ 8;, € W}; and (v'u) Moy, ) € RE \ Rp.

Proof. Assume that the set {a | s, Si, " 5i,, ¢ W}:, 1 < a < m} is non-empty.
Then we can take the minimum A of this set. Consequently, w’ := s;,,, -5, ¢
W}j and s; w' € Wg. Hence, there exists @ € A such that w'(a) € —R* and
si,w'(a) € RY. Since s;, preserves —RT \ {—a;, }, we have w'(a) = —ay,. Thus
w'sqw' ™t = s_q, = si, so that {(w'sa) = l(s;,w') = f(w') + 1. This implies
w'(a) € RT by Lemma 2.5 and therefore deduce a contradiction. Hence, for any
1<j<m,wehavev' :=s; , -5, € W}j.

Note that (v'u)"'(as,) € R; and v = v (ay,) € R;. We claim v ¢ Rp;
otherwise we would conclude v's,(v) = —v/'(y) € —RE, contrary to v's,(7)

Ol

s;,0'(y) € RT. Since u € Wp, we have (v'u) ' (oi,) =u"*(v) ¢ Rp.

J

2.2. Definition of gradings. In this subsection, we define a grading map gr
with respect to an ordered set (Ap,T), which is used for constructing a filtra-
tion on QH*(G/B). In order to obtain gr, we first define “PW-lifting” (Peterson-
Woodward lifting) as follows.

Definition 2.8. Given (Ap,T) with Ap = (a1, -+, o), we denote A; = {a, -+,
aj}, Pj = Pa; and QY = f=1 Zay for each j < r. By the PW-lifting associated
to (Ap,T), we mean the family {a;,, A, }j—1 of injective maps defined as follows.
(We denote Q) = QV,Arp1 = A and P,yy = G.) For each 1 < j <r, the map

P
Va0 Wp! ;/+1/Q;/ — Wx QY

41
is defined by sending (v, \) to its associated elements (vwp, wpy, X) as described by
the Peterson-Woodward comparison formula (see Proposition 2.1) with respect to
(Ajr1,4)). Thatis, X' is the unique element in QY. C Q" satisfying A = ' + QY
and (o, \') € {0, -1} for alla € RT N @gzl Zai; Apr ={a € Aj | {a, X) = 0}.
Remark 2.9. Each Ya, , a; also defines an injective map in the canonical way:
QH*(Pj41/P;) — QH"(Pj11/B);gr0" = qnvo

Recall that a natural basis of QH*(G/B)[q;*,--- ,q;'] is given by gro®’s la-
belled by (w,\) € W x QY. We simply denote both of them as gyw (or wgy) by
abuse of notations. Note that ¢xw € QH*(G/B) if and only if ¢» € Q|[q] is a
polynomial.

Definition 2.8. (continued) Let {e1, - ,e..1} be the standard basis of Z™+1.
We define a grading map gr : W x Q¥ — Z" ! associated to (Ap,Y) as follows.

VWP Wp/
P;wp!

(1) For w € W, we take its (unique) decomposition w = v,41---v1 associated
to (Ap,Y). Then we define gr(w) := gr(w,0) = Z;ii l(vj)e;j.

(2) Foralla € A, we simply denote gr(gov) := gr(1,qav). Using the PW-lifing
associated to (Ap,Y), we can define all gr(q;)’s recursively in the following
way. Define gr(qi) = 2e1; for any oo € Ajp1 \ A, we define

J J
97(gav) = (Uwpwpy) +2 + Zi:l 2a;)ej1 — gr(wp,wp;) — Zi:l aigr(qi),
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J
where wp;Wp; and a;’s satisfy (ijwp;, av—l—z aic) )=va, ., (1, av—f—Q}/).

i=1
(3) In general, z = w[[;_, qZ’“, then we define gr(z) = gr(w)+>_p_; begr(qr)-
Furthermore for 1 < k <m < |Ap|, we define

9Tm = gr(1m] With g, W x QY — zm Rt

being the composition of the natural projection map and the grading map gr. Pre-
cisely, write gr(qgyw) = Z::ll die;, then we define gri, . (gw) = 1", die;.

Recall that the inversion set of w € W is defined to be
Inv(w) = {y € R" | w(y) € —R"}.
It is well-known that ¢(w) = |Inv(w)| (see e.g. [14]). Take the decomposition w =
Vpg1 - -v1 of w associated to (Ap, T). For each k, we note v, 41 -+ vpy1 € Wk and
vg v € Wp,. Thus for v € Rp,, v - -v1(y) € —R™T if and only if w(y) € —R™.
Consequently, £(vy---v1) = [{y € R;k | wiy) € =R} = [Inv(w) N R;k|. Note
that £(vg -+ -v1) = Zle £(vi). Hence, we have

r+1
gr(w) = [Inv(w) N (RS \ RS, )lex.
k=1

Remark 2.10. We would like to thank the referee for reminding us of the above
expression of gr(w). Following the suggestions of the referee, the proof of Propo-
sition 3.1 has been simplified substantially in the present version. In type A, the
vector gr(w) is essentially what is known as an “inversion table” (see e.g. [31]).
The referee has also made the following conjecture:
r+1
grle) =Y > ByVer

k=1 + +
BeRPk \Rf’kq

If it is true, the proofs of our main results might also be simplified substantially.

In Proposition 3.10, Proposition 3.12, Lemma 3.26 and (the proof of) Lemma
3.27, we will explicitly describe all the gradings gr(g;)’s with respect to a fixed
(Ap,T). In particular, we will see that gr(¢;) = (1 — j)ej—1 + (1 + j)e; for
2 <j <r—1 (which also holds for j = r if Ap is of A-type).

2.3. Proof of Theorem 1.2. Assuming Dyn(Ap) is connected, we always con-
sider (Ap,T) with the fixed order Ap = (a1, -, ;) in a special way as it will be
explained in section 2.4. In this subsection, we construct a filtration on QH*(G/B)
with respect to a totally-ordered sub-semigroup S of Z"*! and prove Theorem 1.2,
which is the most essential part of our main results.

Unless otherwise stated, we will always use the lexicographical order, when-
ever referring to a partial order on (a sub-semigroup of) Z™ in the present paper.
(Recall that a < b, where a = (a1, -+ ,am,) and b = (by,--- ,by,), if and only if
there is 1 < j < m such that a; < b; and a, = by for each 1 <k < j.)

Definition 2.11. We define a subset S of Z't! and a family F = {Fa}acs of
subspaces of QH*(G/B) as follows:

S {gr(pw) | pw e QH(G/B)}Y; Fa2 @  Qqw C QH'(G/B).

gr(gaw)<a
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As will be shown in section 4, we have
Lemma 2.12. S is a totally-ordered sub-semigroup of Z™+1.
Now we can state Theorem 1.2 more explicitly as follows.

Theorem 1.2. QH*(G/B) is an S-filtered algebra with filtration F. Furthermore,
this S-filtered algebra structure is naturally extended to a Z™ ! -filtered algebra struc-
ture on QH*(G/B).

That is, we need to show FaFy C Faip for any a,b € S. In order to prove it,
we need to assume the following Key Lemma first.

Key Lemma. Let ue W and v € RT.
a) If l(usy) = l(u) + 1, then we have gr(usy) < gr(u) + gr(s;) whenever the
fundamental weight x; satisfies (x;,v") # 0.
b) If L(usy) = L(u) + 1 — (2p,~v"), then we have gr(gyvusy) < gr(u) + gr(s;)
whenever {x;,v") # 0.

Lemma 2.13. For any 1 # w € W, there exist w' € W and 1 < j < n such that
gr(w) = gr(w") + gr(s;) and the quantum structure constant N;j’gu/ is positive.

Proof. Take the decomposition w = v,41---v1 of w associated to (Ap,T). Since
w # 1, the set {i | £(v;) > 0} is non-empty, so that we can take the minimum & of this
set. Thus we have v1 = --- = vp_1 = 1 and vy = 5,0 with £(s,0) = 1 + £(v). Note
that v := 07! (ap) € R}, , and s, = vg. Consequently for w' :=vpy1 -+ Vg410, we
have w = w's, and ¢(w's,) = £(w)+1. By Lemma 2.7, we have 0 € Wf;:’l and v ¢
R;Skil. Hence, there exists 1 < j < n with a; € Ay, \ Aj_; such that (Xj,'yv> > 0.

For any one such j, by Proposition 2.2 we have N;;’,?u, = N;Z:Zj,’o = (x;,7Y) > 0.
Furthermore, we have gr(w) = S5 6(vi)e; = (£(v)ey, + ZZI;H l(vi)e;) + ey =
grw') + gr(s;). 0

Proof of Theorem 1.2. For the first half of the statements, it suffices to show: o™ x
gro" € Fayp, for any o¥, qro* € QH*(G/B) with a = gr(w) and b = gr(g\u).
We use induction on £(w).

If ¢(w) = 0, then ¢* is the unit and it is done. If /(w) = 1, then w = s; and
consequently we have 0% x 0" € Fyp.(s)1gr(u) = Fatb—gr(gr), by using Proposition
2.2 and the Key Lemma. Thus we have % % ¢yo" € Fayip in this case. Assume
¢(w) > 1. By Lemma 2.13, there exist w’ € W and 1 < j < n such that gr(w) =
gr(w') + gr(s;) and o™ % 0% = co™ + > v Copduo?, where ¢ = N;”,”OS, > 0 and
the summation is only over finitely many non-zero terms for which ¢, , > 0. In
particular, we have ¢(w’) = f(w) — 1. Using the induction hypothesis, we have
o % qau € Fyrwrysb. Thus (co™ + 37, €ouqu0?) % qrot = o % (0™ % qro™) €
Fyr(s))+gr(w)+b = Fatp. Since all the quantum Schubert structure constants are
non-negative, there is no cancellation in the summation on the left hand side of the
equality. Hence, we conclude o * gxc" € Fatp, by noting ¢ > 0.

The second half is a direct consequence of the first half. Indeed, QH*(G/B)
has a Z" T !-filtration {Fa}aczr+1, which is a natural extension of F. Here we just
need to set Fo := Up<apeg Fa for any a € Z'H1\ S (note S is sub-semigroup of

Z'r'—i—l). O
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The next proposition follows directly from Definition 2.8.

Proposition 2.14. The evaluation of q at 0 reduces the Z" ' -filtration on QH*(G/B)
to the classical Z" ' -filtration on H*(G/B), which comes from the iterated fibration
{Pj—l/PO — Pj/PO — Pj/Pj—l ;I% (Recall that PO =B and P7«+1 = G)

2.4. A canonical order (Ap,Y). When referring to (Ap,T), we have already
given an order on Ap via the permutation Y. It is done if » = 1, since T = ida,
is the only permutation map. In this subsection, we introduce the special choice of
the orders for r > 2 as mentioned at the beginning of section 2.3. We will use this
special order throughout the present paper, which is in fact obtained in a canonical
way. We introduce it first for a subbase of A-type and then for others by reducing
them to the case for A-type.

Suppose Ap is of A,-type. We rewrite the simple roots so that A = {81, , Bn}
and Dyn(A) is given by one of the cases in Table 2. In terms of the order
(81, ,Bn), we obtain a canonical order (Ap,T), in the sense that Dyn(Ap) is
inside Dyn(A\ {marked points}) in a natural way. That is, we require the condition
(%) to be satisfied.

(%) : there exists o > 0 such that a; = o4, for each 1 < j <.

Furthermore, the additional conditions in Table 2 tell us the information on the
starting point aq(= B,41) and the ending point a,.(= Bx = Bo+r). For instance,
any one case of C8), C9) and C10) implies that o = 0 and Ap = (ay, a2) = (B1, B2).
That is, the order of Ap = {3, s} is expressed in terms of the order of {81, 52}
with respect to the corresponding case.

Remark 2.15. In Table 2, we have treated bases of type Eg and Er; as subsets of
a base of type Eg canonically. Because of our assumption 2 < r < n = |A|, a base
of Ga-type does not occur there.

Remark 2.16. Intrinsically, we obtain the canonical order (Ap,T) as follows.
Ap admits canonical orders in the sense that Dyn(Ap) is given by o, as o -
There are two ways to denote an ending point (by ay or ). We fix one in the
following way. There is at most one root in Ap, saying «, such that the Dynkin
diagram of Ap U {ax € A\ Ap | (ag,a) # 0} is not of A-type. We denote an
ending point by aq such that both the ending point and the connected component of
A\ Ap adjacent to it are as far away from « as possible.

Comparing it with Table 2, we can easily see that A p must occur in at least one
case of Table 2 (together with condition (%) being satisfied). If it occurs in more
than one case, then we just choose any one of these cases. The choice does not
affect all the results, since all the relevant statements hold with respect to all cases
in Table 2 as we will see later.

Remark 2.17. If (A, Ap) occurs in more than one case in Table 2, (for instance
in case C2) and C3) with respect to the condition k = r =n —1 = 3,) then the
corresponding orders (Ap,T) and (Ap,Y') are isomorphic. That is, there exists
an isometry of ¢ : A — A such that p(Ap) = Ap and To¢p =Y.

Now we assume Ap is not of A-type and denote ¢ := r — 1. Note that there
always exists o € Ap such that Dyn(Ap \ {a}) is of Ac-type. Thus when r > 2,
we obtain a canonical order (Ap,Y) by requiring:
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TABLE 2. (Ap,Y) when r > 2

| | Dynkin diagram of A | Additional conditions (k := o + r)|

kK<n-—1;

Cl) ﬂl 62. . ﬂn—l Y /BTL iS adjacent tO /BTL—l A iS Of type A B or C
) n n

Bn
r>3
C2) o0 .. fign—Qor{ =
Bi B2 Baz Bna k=n-—1
B3
C3) o~ o -- k=r<3
Bn Bn—1 Ba B2 B
Bs
> >
C4) o—o—o—o—l—o—o l‘6§501"{r:3 Of{r:i
Br B2 Bs Ba Bs Bo fr k=6 K=
Ba
>
C5) o—o—o—o—i—o—o k<3 or { " :i
Bs Br Bs Bs Bs B2 Bu k=
Bs
C6) o—o—o—o—l—o—o k=r=4
Br Be PBs Ba Bz P2 P
Be
C7) k=6,r>3
B1 B2 Bz Ba Bs Pr Bs
B1
CS) o—o—o—o—I—o—c k=2
Be Bs Ba Bs B2 Pr Bs
oO—C—=—0
C9) Br B2 Bs Ba k=2
o—Oo=—eo—0
C10) Br B2 Bs Pa K=2
a) the restriction of Ap to Ac = (aq,- -, ac) is the canonical order obtained

by directly replacing r with ¢ in Table 2;
b) a, = Botr (note that ay—1 = Poyr—1 once a) holds).
Precisely, Ap fulfills one and only one of the followings (note that kK = o + ¢ and
condition (k) is satisfied):
(1) Ap is not of D-type. It occurs in a unique case (among C1),C4) for k =
7,C9) and C10)) in Table 2.
(2) Ap and A are both of D-type. It occurs in case C2).
(3) Ap is of D-type and A is of E-type. It occurs in either of cases C5), CT7).

As a consequence, the canonical order (Ap, T) is determined by the corresponding
case in which Ap occurs. For convenience, if Ap occurs in both C5) and C7), then
we always choose case C7) for use.

When r = 2, we can still give an order on Ap so that it is compatible with our
arrangements for r > 2. Indeed, we do this as follows. Since Ap is a proper subset
of Ap, the case of Ga-type does not occur. Since Ap is not of A-type, A must be
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of type B,C or F. we take (a1, a3) to be (8,-1,8,) for the former two cases, or
(B2, f3) in C10) for the last case.

Remark 2.18. Ap occurs in case C5) other than in case C7) only if r =5 and A
is of E7-type or Es-type.

3. PROOF OF THE KEY LEMMA

This whole section is devoted to the proof of the Key Lemma. The readers, who
wish to see more concrete statements of our theorems as well as their proofs, can
skip this section by assuming the Key Lemma and two consequences (Proposition
3.23 and Proposition 3.24) of a special case of it first. For emphasis, we restate the
Key Lemma as follows.

Key Lemma. Letu € W and v € R
a) If l(usy) = l(u) + 1, then we have gr(usy) < gr(u) + gr(s;) whenever the
fundamental weight x; satisfies (x;,v") # 0.
b) If L(usy) = l(u) + 1 — (2p,~"), then we have gr(g,vusy) < gr(u) + gr(s;)
whenever the fundamental weight x; satisfies (xi,v") # 0.

We first do some preparations in section 3.1 and section 3.2. Then we prove the
Key Lemma for the special case when Ap is of A-type in section 3.3, and obtain
two consequences in section 3.4. Finally in section 3.5, we prove the Key Lemma
for general cases. In addition, we also give the explicit descriptions of all gr(g;)’s
in section 3.2 and section 3.5.

We would like to remind our readers of the notation gr(w) = Zgii ije; =
(i1, yir41) for w € W and the notions “gr,,”, “grk,m)” in Definition 2.8. Fur-

thermore, we assume Ap to be of A-type throughout this section except section 3.5.
(r) .

i ugll) € Wp by Corollary 2.6, once assuming

ip41 = 0. Unless otherwise stated, by w = vul(:) e ugll) we always mean the de-
composition of w associated (Ap,Y) when Ap is of A-type; equivalently, we have

veWr.

As a consequence, we have w = u

3.1. Some properties on W. The main results of this subsection are Proposition
3.1 and Proposition 3.4, which compare the gradings of certain elements in W.

Proposition 3.1. Let v € R satisfy (a,7") =0 for all « € A = Ap \ {aq},
where 1 < a <r. For any w € W, we have

T
gro—1(wsy) = gre—1(w) and gry(ws,) < gry(w) + Zk:a aey.

Lemma 3.2. Let v € R, Ap C A and w = vu withv € WP and u € Wg. If
(aj,7Y) = 0 for all aj € Ap, then ws, = vu with © € W¥. In particular if
Ap={ai, - ,aq} where a <, then grq(wsy) = gra(w).

Proof. Let ws, = vt where ¥ € WP and @ € W . By the assumption, we conclude
sy(aj) = o and sjs, = s4s; for any a; € Ap. Hence, us, = syu and consequently
we have dau~! = ws,u™! = wu~ls, = vs,. If 4 # u, then there exists 3 € ng
such that 3 := au~t(B) € —R;. Hence, we conclude vs.(8) = v(8) € RT, contrary

to vs,(8) = vau~'(B) = #(8) € —R*t. The latter statement becomes a direct
consequence. O
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Proof of Proposition 3.1. Write gr(w) = S 41 irey and gr(wsy) = Shilirer. By
Lemma 3.2, we conclude grq—1(wsy) = grq—1(w). Thatis, iy =irfor 1 <k <a-—1.

Clearly, i, < a < i4+a. Fora+1 < k < r, we note that R;k \R;ki1 =
:{Zf:j ar | 1 < j < k}. In addition, we have i, = |[Inv(w) N (R;k \R;k71)| and
1 = [Inv(ws,) N (R;Sk \R;k71)|. Since (ay,v") =0 for any a + 1 < ¢ < r, we have
U’Sv(Zf:j ap) = w(Zfzj ;) whenever j > a+ 1. Hence, i, — iy < |{Zf=j ap | 1<
j<a)=a.

Hence, we have gr,(ws,) < gr.(w) + Y_;_, aek. O

Lemma 3.3. Forany 1 <i<j<m<randl1l <k <m, we have

CRRTE I TERAR

u(M ) o vh=j+1

[i.3] " [km] “ml,mguiﬁ)—ll’ ifi<k<j
(m m

Utk Yi-1,5-1p R <
For the above lemma, we recall that ufﬁ"ﬁ = 5;5i+1 - S;. As adirect consequence,
we obtain the following grading comparisons.
(r) ..

Proposition 3.4. Let w = u; uill) Suppose 7 <m < r.

a) Ifﬁ(u(;n)w):j +4(w), then gr(u(jm)w):gr(w) +jey for a unique 1 <k<r.
b) If {(s;w) = L(w) — 1, then gr(s;w) = gr(w) — ey for a unique 1 < k <r.

c) l(wsj) = Ll(w)—1if and only ifi; > ij_1+1 (whereig :=0). When this hap-

pens, we have gr(ws;) = chjl irer+ (i; —1)ej_1 +ij_1e;+ ZZ:;‘H irek.

Furthermore if w' € Wp satisfies £(w'w)=£(w)£L(w"), then there exist non-negative
integers py’s such that Y, _, pr = {(w') and gr(w'w) = gr(w) £ >, _, prex.

(m), (r) _ (m) () _ (") (r)

Proof. Note that Uy U= U U 1] T Y1) Ym0 By

Lemma 3.3, there are exactly four possibilities for this product. Since £(u§m)w) =

j+£4(w), the (third) case m—j+1 < r—i,+1 < m cannot occur. If m = r—i, (i.e.

the second case occurs), then it is done by taking ey = e,. If r — i, +1 > m + 2,
(m) (r) _ (r) (r) _ () (m) . ;

we have m <r —1 and Uy U = UL g W) = Y, Uy ifr—i.+1<

: (m), (1) _ (r) () _ (m-1)  _
m —j+ 1, we have u; " u; " = w4 U w1 = U1 Ymegme1]

ugr)u§m_1). That is, in either of the remaining two cases, we always have ’u;m)w =

ugr)u§m/)w’ in which E(uﬁm/)w’) =j+Ll(w') withm’ <r—landw' = ugl:l) . ugll)
Hence, a) follows by induction.
The arguments for the remaining parts of the statement are also easy and similar,

which we leave to the readers. O

Proof of Lemma 8.5. Note that s;s, = sgs; if [j — k| > 2, and sgsjsi = sjsps; if
|7 — k| = 1. The first two cases are trivial. For 1 <k < b < m, we have

(m)
Sb gy = Sb -+ (Sk =+ Sm) = Sk +* Sp-25bSb-15bSb41 " * Sm

= Sk " Sp—25p—-15bSb—15b+1 """ Sm
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= (Sk+**Sm) - Sp—1 = ufgz)n]sb,l.

Thus if £ < ¢, then ufﬁ%ufgiﬂ = ufzz}ufﬁ)l,j_l]. If i <k <j, then
wf iy = (i) (s - 7) - (st sm)

= (i k) (k- Sm)(Sk-8j_1)
Siv k1) (Sk1 - Sm)(Sk - Sj-1)

Sk1c e Sm)(8i 0 sj-1) = UEIZL}-)Lm]uE;nj)—l]' 0
Let us recall the following well-known fact, which holds in general.

Lemma 3.5. Let P C P be parabolic subgroups of G. If w € Wlf, then L(w) <
lwpwp). Furthermore, the equality holds if and only if w = wpwp.

Proof. Note that wp sends positive roots RE to negative roots fR; C fRE and
wp sends —R; to R;. Hence, wlawls(R}g) C R*, implying wpwp € W}:. Hence
the statement follows, by noting wp is the unique longest element in W3 and
lwpv) =L(wp) — L(v) for any v € Wp. O
Lemma 3.6. Let Ap = Ap \ {ag} where 1 < k < r. We have a) gr(wpwp) =
> p—i ke and b) for any v € WE, gr(v) = > opei Jp€p with jp < - < jx < k.

Proof. Write gr(v) = Z;:1 jpep and set jo = 0. For each o, € Ap, we have
l(vsp) = £(v) + 1 by Lemma 2.5. This implies j, < j,—1 by Proposition 3.4. That
is, jr <+ < g1 <jp <kand 0 < jr_1 <--- <j; <jo=0. Thus b) follows.
Let w = uff) . ~u,(€k). Note that w € W}f and f(w) = k(r—k+1) = |R;|7|R;| =
l(wpwp). By Lemma 3.5, we have w = wpwp. That is, a) follows. O

In addition, we introduce the next three useful lemmas.
Lemma 3.7 (see e.g. [24]). For any v € R", we have {(s) < (2p,v) — 1.

Lemma 3.8. Let v € RT \ A satisfy {(sy) = (2p,7) —1. Forany1 < j <n
with {aj,vyY) > 0, we have (a;,vY) = 1. Furthermore for § := s;(v), we have
BY =7" —af and l(sg) = (sy) —2=(2p, ") — L.

Lemma 3.9. Let v € RT\ A. If l(us,) = l(u) + 1 — (2p,7") where u € W, then
U(sy) = (2p,~") — 1. Furthermore, we take any 1 < j < n with (a;,7") > 0, and
set 3 :=s;(vy). Then all the followings hold:

lus;) =Ll(u)—1, L(usjsg) =L(us;)—L(sp), L(usy)=Ll(usjsps;) =L(us;sg)—1.

Proof. We prove all these three statements together, including the proof of Lemma
3.7 from [24] by induction on £(s).

If ¢(sy) = 1, then v € A and consequently £(s,) = 1 = 2(p,v") — 1. Now we
assume v € R\ A. Take any 1 < j < n such that (y,a)) > 0 (such j does exist;
otherwise, we would conclude 2 = (v,v") < 0). Consequently, (a;,7") > 0. Thus
sy(a;) = aj— (0,7 )y € =RT. Also sjsy (o) = ({7, ) ) (e, 7") =D — (o, 7 )y
is a negative root. By Lemma 2.5, we have £(s;s,s;) = {(sy) —2. Because s,(7)" =
5i(vY) =" —{a;j,v")aj, we have (p,s;(7)") = (p,7") —(a;,7"). By the induction
hypothesis, we conclude the following;:

(3.1) U(sy) = Usjsys5) +2 < 2(p,si(7)") —1+2
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(32) 2(p,7") = 14 2(1 = {a;,7"))
(3.3) (2p,7") — 1.
If £(sy) = (2p,7")—1, then both (2.1) and (2.3) must be equalities. In particular,
we conclude (a;,7") =1, ¥ =" —af and £(sg) = £(s,) —2 = (2p,8Y) — 1.
It remains to show Lemma 3.9. Indeed, we have
() — U(sy) < Eusy) = 0w) — (2p,7") — 1) < () — £(5,).
Hence, both inequalities become equalities. Thus ¢(s,) = (2p,7") — 1.
Furthermore, we note £(usjsgs;) = £(usy) = {(u) — {(s,) and

IN

Uusjsgsj) > L(usjsg) —1 > L(us;) —l(sg) —1 > L(u) —1—L(sg) —1 = L(u) —{(sy).
Hence, the statements in Lemma 3.9 also follow. O
3.2. Explicit gradings of ¢;’s. The main results of this subsection are Proposition
3.10 and Proposition 3.12, giving explicit formulas for gradings gr(g;)’s.

Proposition 3.10. Let 2 < j < r. Following the notations in Definition 2.8, we
have PYa; n; (1, af + Q1) = (u§-]:11),04]V) and gr(g;) = (1 —j)ej_1 + (1 + j)e;.
Proof. Note that A; 1 C Aj with Aj\ A;_1 = {a;}. Clearly, (o, ) € {0, -1}
for all « € Rt N @f;l Zai. Hence, we have Ap, = {o € Aj_1 | (a,af) = 0}
= A1\ {oj_1}. Therefore we conclude gr(ijfle;,l) = (j —1)e;j—1 by using
Lemma 3.6 (with respect to A;_;). Thus the former equality holds. Consequently,
the latter equality follows by Definition 2.8. O

The next lemma works in general, namely we do not need to assume Ap to be
of A-type.

Lemma 3.11. Letu € W and X € QV.

(1) Write gr(qxu) = (41, ,jr+1). Then ZZE Jre =L(u) + (2p, ).
(2) Let v € R" satisfy l(usy) = l(u) + 1 — (2p,vY). For any 1 < p < n,
gr(gyvusy) < gr(u) +gr(sp) if and only if gr.(qgyvusy) < gry(u) + gry(sp).

Proof. Denote |(a1,- - ,ar41)| = ZZE ay. Note that {(u) = |gr(u)|. Furthermore,
we conclude |gr(gqv )| = 2 for all & € A by induction. Thus (1) follows.

Write gr(u) + gr(sp) = (i1, ,iry1) and gr(gyvus,) = (i1, ,ir41). Assume
(i1, -+ yips1) < (i1, -+ ,ip41), then we have (i1, --- ,4,) < (i1, - ,i,) by definition.
Assume (i1, ,i,) < (i1,---,i,). If “<” holds, then it is already done by the
definition of the lexicographical order. If “=" holds, then we conclude 7,1 = i1,
by noting Z;;i ik = |gr(gyvusy)| = L(us,) + (2p, V) = L(u) +1 = Z: 1. Thus
(2) follows. O

Proposition 3.12. For any a € A\ Ap, one and only one of the cases in Table 3
occurs, where we require v > 2 (resp. 3 and 5) for case b) (resp. e) and f)).

Proof. Clearly, Dyn(Ap U {a}) is given by a unique case in Table 3.

Let A\p = ¥+ Q) and Ya A, (1, Ap) = ¢r,wpwp:. Here A\p € QV is the (unique)
element satisfying (3, \g) € {0,—1} for all 3 € Rf. Since Ap is of A-type, this
is equivalent to requiring (a;,Ag) = 0 for all a;j € Ap but at most one and if
such unique «; exists then (a;,A\g) = —1. For each case in Table 3, it is easy
to see that the element A\p as provided does satisfy this property. Consequently,
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TABLE 3. Explicit grading gr(gev) for « € A\ Ap

| | Dyn(ApU{a}) | vaa.(1,a”+Q%) | gr(qav)
) | ar a7 oo Qav ul” (r+2)e,41 —re,
b | & e T e | davut” g (r+2)er1 — )y e;
)| ar a T e w qav unfi)lufi_ll) (2r +2)e,41 — 2re,
d) | o o T qov " (r+2)e,11 —re,

«
e) o—o0--- o—l—o qavuy_)lugi_ll) 2re, 11 + (1 - r)(er + erfl)

] (2 Qo
o—la—o—o T
. —1) (r—2

0] o... Gov S | Br = der + (2-1) Y e

a1 Qr—1 Qr j=r—2
g) o==e dav S1 (-1,3)
h) o= Gav q151 (=3,5)

o——O:--0—0 [ ]

1) aq ar o« qaVv 2eTJrl

Apr ={a; € Ap | {ai, Ag) =0} = Ap \ {ax} for a certain 1 < k <r + 1. Hence,
we can directly write down wpwps by using Lemma 3.6. Finally, we obtain gr(gav)
as is listed in Table 3, by direct calculations (with Definition 2.8 and Proposition
3.10). O

The next corollary follows directly from Table 3.

Corollary 3.13. If r = 1, then gr(q;) = (a, —a +2) with a = (a1, af) for each j.
Consequently for any X € Q, we have gr(gx) = ((a1, ), (2p — a1, A)).

As we will see later, we use induction on #(s,) to prove the Key Lemma. The
next proposition shows the special case of the Key Lemma when £(s,) = 1.

Proposition 3.14. Let w € W and 1 < j < n. If l(us;) = l(u) — 1, then
gr(gjus;) < gr(u) + gr(s;).

Proof. Let gr(u) = (i1, -+ ,i,41) and gr(us;) = (i1, - ,i,+1). When a; € Ap,
we have 1 < j <. If j = 1, then we have iy = 1 and gr(usy) = (0,42, ,irq1).
Hence, gr(qius1) = gr(q1) + gr(us1) = (2,0,---,0) + (0,42, ,ir11) = gr(u) +
gr(s1). If 2 < j <r, then by Proposition 3.4 and Proposition 3.10, we conclude
grgjus;) —gr(u) —gr(s;) = (L=j)+i;—1—ij1)ej1 +((1+7) +ij-1 —i; = L)e;.
Thus we have gr(gjus;) < gr(u) + gr(s;), by noting 0 < i;_1 <1i; < j.

When a; € A\ Ap, we note that gr(s;) = e,41. By Lemma 3.11, it suffices to
show gr,(qjus;) < grr(u). Write gr(gjus;) = (i1, ,ir11). and Yanap(l,af +
Q}) = Apwpw'. We first assume Ap = af. Then Apr = {a € Ap [ (, o)) = 0}. If
Apr = Ap (i.e. casei) of Table 3 occurs), then we have gr.(g;) = 0 and gr,(us;) =
grr-(u) (by Lemma 3.2). Thus it is done in this case. Otherwise, we conclude
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Ap = Ap \ {a,} for a unique 1 < a < r (from Table 3). Consequently, we have
grr(gq;) = —grr(wpw') by definition, gry(us;) < grr(u) + Y_,_, aex by Proposition
3.1 and gr(wpw’) = Y_,_, aer by Lemma 3.6. Hence, we do have gr,(gjus;) <
gr-(u) in this case. Now we assume A\p # aJV. Due to Table 3, it remains to
consider case ¢) and h). If case h) occurs, then n = 2,7 = 1, gr(¢q;) = (—3,5) and

we do have i1 = —3 +1i; < —2 < 4y. If case c) occurs, then gr.(¢;) = —2re,
and we have gr,_1(us;) = grr—1(u) by Lemma 3.2. Hence, gr,(q;us;) — gry(u) =
(=2r+1i, —i.)e, < (—=2r+r —0)e, < 0. Hence, the statement follows. O

3.3. Proof of the Key Lemma when Ap is of A-type. Recall that we have
assumed Ap to be of A-type in this subsection.

Proposition 3.15. Part a) of the Key Lemma holds.

Proof. Write usy = vp410, - --v1, where v,41 € WP and v, = uif) forl1 <k<r.
Thus gr(usy) = (i1, -+ ,ir, €(vy+1)). Fix a reduced expression of v,11. Since
l(u) = L(usysy) < L(usy), by Lemma 2.5 we have © = vry1 -+ Umt1UmUm—1- - V1
for some 1 < m < r + 1, in which v,, is the element obtained by with deleting a
(unique) simple reflection from v,,. Since ¢(u) = £(us,) — 1, the induced expression
of w is also reduced. Hence, {(7,,) = {(vs,) — 1 and if we write 0, = v'w with
v e Wg:“l and w € Wp,, ., then £(7,,) = £(v') + (w) and l(wvy,—1---v1) =
(w)+£(Vp—1 - - -v1). By Proposition 3.4, there exist non-negative integers py’s such
that gr(u) = (i14+p1, s im—1+DPm—1, (V") imig1, -+ s ir, £(Up41)) with ZZ:; DL =
¢(w). On the other hand, by Lemma 2.7 we conclude v € R;Sm \ Rp,,_,, so that
min{gr(s;) | (xi,7") # 0} = e.,. Hence, we have gr(us,) = (i1, ,ir, l(vr41)) <
(i1 4+Dp1, yime1 +Pm—1, (V") + 1, i1, ir, £(Vr41)) = gr(u) + €y, by noting
C(vrg1) + D gy ik = L(usy) =L(u) + 1 =L(")+ > ix + ZZI:_II pr + 1. O

The remaining part of this subsection is devoted to a proof of the following.

Proposition 3.16. Partb) of the Key Lemma holds. That is, for any u € W and
v € R, if (L1): Ll(usy) =L(u)+1—(2p,vY), then we have (L2): gr(gyvusy) <
gr(u) + min{gr(s:) | (xi,7") # 0}.

Lemma 3.17. Part b) of the Key Lemma holds when Ap = {a1}.

Proof. We use induction on ¢(s,). If ¢(s,) =1, then v € A and consequently (L2)
follows from Proposition 3.14. Now we assume v € RT \ A. Write gr(u) = (i1, 12),
gr(usy) = (j1,72) and gr(q,v) = (k1,k2), in which k1 = (a1,7") by Corollary
3.13. If ky < 0, then j1 + k1 <1+ k; <0. If k4 = 0, then we have i1 = j; by
Lemma 3.2. In either of the cases, we conclude j; + k1 < ¢;. Thus (L2) holds
by Lemma 3.11. Otherwise, (a1,7") = k1 > 0. Then by Lemma 3.8 and Lemma
3.9, we conclude that for 3 := s1(v) the followings hold: 3" =~V —aY; gr(q1) +
gr(usy) < gr(u)+gr(s1) (by Proposition 3.14); gr(qav) + gr(usisg) < gr(usi)+e.
(by the induction hypothesis), where we denote e. := min{gr(s;) | {xi,3") # 0};
gr(usisgs1) = gr(usisg) — gr(s1) (by Proposition 3.4). Hence, we conclude (L2)
holds, by noting e. = min{e,, gr(s1)} = min{gr(s;) | (x:,v") # 0}. O

When A is also of A-type, it is easy to obtain Ag and gr(g.,) associated to a
given A\p € QV/Q}. For instance, by direct calculations we conclude the following
lemma. (Recall that a; = 8,4 for 1 < j <r in Table 2.)
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Lemma 3.18. Let A be of A-type and m < r + 1. Following the notations in case
C1), we set \=3 " kB, i 1_pmir- Then the followings hold (where 0 -eg :=0).
(1) If m = r+ 1, then (a,\) =0 for all « € Ap; if m < r+ 1, then for any
a € Ap, (a, ) is equal to —1 if @ = apy1-m, or equal to 0 otherwise. In
particular, X\ is the element associated to mﬂ(\)q_ﬂ_l + QY via PW-lifing.
(2) grgn)=m(r+2)eq1—(r+1—m)>,_ . ex. In particular if m = r+1,
then gr,(¢x) = 0.

Furthermore, we have gr,.( ZZ)H BY) =0, whenever o > 1.

Since the case of A-type is relatively easy to handle, we would like to compare
all relevant information for A being of general type with those when A is of A-type.
Due to Lemma 3.11, we only need to care about gr,(¢gxw). For these purposes, we
bring in a base A of A-type and introduce the notion of “virtual coroot” as below
for r > 2.

Let A = {31, e ,Bn} be a base with Dyn(A) given by 5 5, '~ 4, - Denote

&y = Boﬂ- for each 1 <4 < r (the notation “o” is the same one as in Table 2). Set
Ap = {c1,---,d& }. Following Definition 2.8, we can obtain a grading map with
respect to (A p,1d AP), which we also denote as gr by abuse of notations. Clearly,
Bj — [ extends to an isometry A\ {ﬂn} — A\ {p,} of bases, where 7 is given in
Table 4. Denote Q¥ = @, Z3 .

Definition 3.19. Let A € Q. We call Ae QV a virtual coroot of \ (at level n),
if X satisfies both gr.(qs) = grr(qn) and (&, \) = (i, A) for 1 <i <.

Lemma 3.20. For each case in Table 2 (where we have assumed r > 2), there is
a virtual coroot A of A = 2?21 ;B (at level n), given by Table 4.

TABLE 4. Virtual coroot A= ¢, fi+ Z;’;ll chjV

C1)[C9)[Cl0) [ C2)[C3) [Cs) [CT) | Ca) C6) C3)
nllm | 3| 3 | n | 4|5 |7 8 8 7
. . . 3 . 5 . 5 .
fo| —(Bo-1.8))By 1+ 26) DFLVE IR DR L
Jj= Jj= Jj=

Proof. Note that A\ {3, } is canonically isomorphic to A\ {3,} as bases and that
Ap C{B1, -+ ,Bp-1}. It is easy to see ﬁjv is a virtual coroot of B} (resp. 0) for
each j <7 —1 (resp. j > n+ 1). Combining Table 2 and Table 3, we conclude
that grr(g:) = grr(gsy) and (&, 1) = (i, By) for 1 <4 <r. That is, 1 is a virtual
coroot of 67\7/ . Hence, the statement follows. O

Remark 3.21. Lemma 3.20 tells us about the existence of a wirtual coroot. Due
to Lemma 3.18, we note that the uniqueness does not hold: if A is a virtual coroot
of \, 50 is A+ Z?leﬁjv.

Due to Lemma 3.17, it remains to care about the case when r > 2. The next
proposition shows that we can describe most of the coroots uniformly with the help
of the notion of “virtual coroots”.
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Proposition 3.22. Assume r > 2. Let v € RT \ A satisfy ((sy) = (2p,7") — 1.
Then one and only one of the followings holds.

(1) There exists a virtual coroot vV = Z;: épdry of 7Y, where . qq = Botrits
Cre1 <7 oand é,—1 < ¢ép_1 < ¢y for eachp € {1,--- ,r+1} (where ép :=0).

(2) Y :Z;n:dﬁg whereo <m < o+r and d < m.
(3) Case C9) occurs and vV = By + BY.

Proof. Let 'yvzzyzl ¢jB; , which has a virtual coroot Z?Zl EjB]V by Lemma 3.20.
We first assume ¢, # 0. Set (¢}, -+, c}) = (c1, - ,¢y) — [%](1, -++,m). Then

we obtain another virtual coroot Y77, ¢ JV of 7V, by noting that > 7_, Jﬁjv is a
virtual coroot of 0. We claim ¢; —1 < ¢;_; < ¢ for each i (where ¢ := 0) and
show this by discussing all possible coroots with respect to the type of A.

When A is of A-type, clearly it is done (by noting (¢, ,¢;) = (¢1,-++ , &) =
(0,--+,0,1,---,1)). When A is of D-type, either C2) or C3) will occur. For the
former case, we have n = n and ¢,,—o € {1,2}. If ¢,,_2 = 2, then we have ¢,—1 =1
and (¢j, - ,c,) = (é1,-++,¢,) = (0,--+,0,1,---,1,2,--- 2). If ¢;_o = 1, then
vV o= 8 +Z;:a6;l\)/ for some a < m—2 < b < n—1. Hence, (¢}, -+ ,c)) =
(¢1,-++,¢n) = (0,-+-,0,1,-- ;1,1 + 0p.n—1,2). Thus our claim holds. For the
latter case, we have n = 4 and can show our claim with similar arguments. When
A is of E-type, there are only finite coroots which are listed in Plate V, VI and VII
of [6]. In this case, our claim still holds by direct calculations.

When A is of type B,, (resp. C,,), then our claim follows immediately from Plate

IIT (resp. II) of [6], except for the following coroots.

C1) for type B, C1) for type C,
W B2 X B (A<i<n)| X BI+2 > B (1<i<j<n)
iSp<n i1Sp<Jj JSpSn

However, none of the above coroots satisfies our condition: ¢(s,) = (2p,~y") — 1.
Indeed if they satisfied this condition, then for the former case we would have
(Bi,vY) = 2 > 1, contrary to Lemma 3.8. For the latter case, we denote v,/ =
D icpen By 23 hcpen By for j <k <n. Note that v} = v and (By,v) > 0 for
all k. By Lemma 3.8, we have v/, , =~/ — 8} and £(s,,,,) = (2p,7/,;) — 1. Thus
by induction we conclude £(s,, ) = (2p,7/) — 1. However, (B,,,7,) = (Bn, By _1 +
28Y) = 2 > 1, contrary to Lemma 3.8 again. Hence, our claim holds in this
case. When A is of type Fj, which is the remaining case we need to consider
since r > 2, case C10) or C9) must occur. When C10) occurs, our claim follows
immediately from Plate VIII of [6] and Table 4. When C9) occurs, we denote
M := max{ci,ca,c3,¢c4}. If M > 1, then there are 14 coroots in total (see Plate
VIII of [6]), only five coroots among which satisfy our condition on the length.
Explicitly, (¢1,c,¢3,¢4) = (1,2,1,0),(1,2,1,1), (1,2,2,1),(1,3,2,1) or (2,3,2,1).
If M =1, then vV = Zzza By for some 1 < a < b < 4. Clearly, our claim follows,
except for the coroot v¥ = 8y + 5Y.

Note that Ap C {f1, - ,8y-1}. We conclude ﬁ]\/ is a virtual coroot of 0

whenever j < o or j > o+ 1. In particular, we set ¢; = ¢, ; — ¢, for each
0 <7 <r+1. Then we obtain a virtual coroot 7" = Z;E épdry of vV satisfying
ép —1 < ép—q1 < ¢, for each p, whenever ¢,) # 0 except when case (3) of our state-
ments occurs. Furthermore, we note that ¢,.41 < r+ 1 and if “=” holds then we
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must have 4V = Z;z pd;;/, which is still a virtual coroot of 0. In this case, we just

replace 4V with 0 = Z;g 0-dy.

Now we assume ¢, = 0. Note that Dyn({S1,---,By-1}) is of A-type and that
o+ r+1 <mn. Thus if 0 is not a virtual coroot of vV, then we must have vV =
me=d ﬂ; for some 1 < d < m < n— 1. Hence, one of the followings must hold:
(i)m<o; (ii)ym>o+r+1and d < o; (ili) m > o+ r+ 1 and d > o; (iv)
o <m < o+r. If either (i) or (ii) held, then 0 would be a virtual coroot of vV.
If (iii) holds, then Z;i; BV is a virtual coroot of 4V, so that (1) of our statements

holds. If (iv) holds, then (2) of our statements holds. O

Proof of Proposition 3.16. Due to Lemma 3.17, we assume r > 2 and then use
induction on #(s).
If {(sy) =1, then v € A and consequently (L2) follows from Proposition 3.14.
Now we assume v € Rt \ A. Take any 1 < j < n with (a;,7Y) > 0. Write

B=s;i(7), gr(asv) = (A1, Ary1),min{gr(s;) | (xi, ") # 0} = e. and
gr(g;) + gr(us;) = gr(u) + (a1, -+, ar41),
gr(gsv) + gr(us;sg) = gr(us;) +ec+ (1, pri1),
gr(usjsps;) = gr(us;sg) + (b1, -+, bry1).

Thus we have gr(g,vus,) = gr(u) +e.+ Z;E (ap+ by + pp)ep, taking the summa-

tion of the last three equalities. Due to Lemma 3.8 and Lemma 3.9, we conclude
min{gr(si)|<xia7v> 7é 0} = min{ec,gr(sj)} and (,UI; U a,u'TJrl) < 0 by the induc-
tion hypothesis. Furthermore, we have (a1, -+, ar4+1) < gr(s;) by Proposition 3.14.
We first make several observations as follows.
(Ob1) Assume e. < gr(s;) and (o, af) =0 for all @ € Ap. Then (b1, ,bry1) =
—e,41 = —gr(s;) (by Lemma 3.2). Consequently, (L2) follows.
(Ob2) Assume j = 1. Then we have e. < gr(s1), (b1, -+ ,bry1) = —gr(s1) by
Proposition 3.4 and consequently (L2) follows.
(Ob3) Assume 2 < j < r and e. < e;. Then gr(g;) = (j +1)e; — (j — 1)ej_1.
Write gr(u) = ;eri ipep and gr(us;sg) = Z;z kpe,. Note that £(us;) =
l(u) — 1 and l(us;jsgs;) = £(us;sg) — 1. By Proposition 3.4, we have
(a1, ar1) = (iy —dj—1 — j)ej—1 + (j + 1 +ij-1 —ij)ey,
(b1, s br) = (k) — kjor — D)eja + (ki1 — kj)ey,
k?j = Z'jfl + uj — )\j and k?j,1 = ij -1+ Hi—1 — )\];1.

As a consequence, we have (a1 + b1 + g1, ,ar41 + brg1 + pr41) =
(Nl; ce ,Mj,Q, ‘LLj+M, ‘LLjflfM, [LjJrl, ce ,‘LLT+1), Where M = )\j,17>\jfj.
Thus if M =0 and (g1, , -2, s, ptj—1) < (0,---,0), then (L2) follows.

Now we begin to discuss all possibilities for vV, using Proposition 3.22.

When case (1) of Proposition 3.22 holds, there exists a virtual coroot 4" =
Z;z épd;,’ of vV such that ¢,41 < rand¢, —1 < ¢,_1 < ¢, for each p (recall
that ¢, = Boﬂ, and ¢ = 0). Clearly, if a): é.41 = 0, then all ¢,’s are equal
to 0. If b): 1 < é.41 < r and any two non-zero ¢, and &, are distinct, then we

+1. 1. .
have Z;Il Cplyy = Z;’: POy —m4p Where 0 < m < r. Otherwise, we have c):

1 < ¢é.41 < r and there exist distinct p < p’ such that ¢p = ¢y # 0. This must
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imply é, = ép41 since (¢é1,---,¢ér41) is a non-decreasing sequence. Corresponding
to these three cases, we have the following conclusions.

a) (é1,---,641) = (0,---,0). Then we have gr,(¢yv) = 0 and gr,(us,) =
grr(u) by Lemma 3.2. Thus (L2) holds by Lemma 3.11.

b) ¥V = Z;n;ll POy —mtp, Where 0 < m < r. Hence, we have gr,(¢,v)

grr(gsv) = (m—r) 320, ep (by Lemma 3.18) and {(ap,v") = (dp, ") =
0 for p € {1,---,r} \ {r — m}. By Proposition 3.1, we have gr,(usy) <
grr(u) + (r—m) > ep. Thus (L2) holds by Lemma 3.11.

p=r—m

¢) In this case, we can take j := min{p | 1 < p < r,¢é, = épp1 # 0}. That

is, Z;JS Eplp = a1 + D00 PAj_mip, where 1 <m < j < 7. Asa
consequently, we have (a;,v) = (a;,%") > 0, B := 4" — &} is virtual
v v

coroot of gV (= ¥ — aj) and e. < e;. If j = 1, then it is done by

(Ob2). If j > 2, then we use (Ob3). Note that gr,(gsv) = grr(gsv)-
By using Lemma 3.18, we conclude (A1, -, \j—2) = (m — j) Zé;?_m ep,
Aj—1 = (m—j)—(—j+1)=m—1land \; = m(j+1)—mj—(j+1) =m—1—j.
Hence, M = X;_1 — X\; —j =0.

By the induction hypothesis, we have Zé;? tpep < 0. If “<” holds, it is
already done. If “=" holds, we have yi; = -+ = p;_2 = 0 and consequently

pi—1 < 0. Write gr(us,) = (- )%T+1)7~gT(Q’YV) = (5\1;"'3 Ary1) and
gr(us;) = (i1, -+ ,ir41). Then Ay + kp = ip + fp, A\p = Ap, ip = ip and
kp = kp for 1 < p < j — 2. Hence, (k/’l,-" ,k‘j_g) = (il,"- ,ij_g) + (j -

m) Zj_2 €p. Since <Oép7’7\/> = <O.ép7;y\/> =0 for all VS {15 2, 7j - 1}\

p=j—m i
{j —m}, we conclude (k1,--- ,kj_1) < (i1, ,ij_1)+ (j—m) Zé;}_m ep,
by using Proposition 3.1 with respect to (A, Ap) withAp = (o, -+, a-1).

Thus we have kj—1 < 4;_1 + (j — m). Since f(us;) = ¢(u) — 1 and
U(us,) = U(us;jsps;) = L(usjsg) — 1, we have i; = i;_1 and k;_; = kj — 1.
Hence, /j/j:k/’j‘f')\j_zj = ~j—1-l-l—l—(m—l—j)—ij—l <0.

Therefore, we conclude (1, -, pj—2, i, ftj—1) < (0,---,0) and conse-
quently (L2) holds by (Ob3).

When case (2) of Proposition 3.22 holds, we have vV = Z;ld By where o <m <
o+rand d < m. If m = o, then d < o; consequently, we take a; = 84 and use (Obl).
Ifm=o0+1ord=o0+1, then we take j = 1 and use (Ob2). Otherwise, we have
eitherd<o<m=o+joro+j=d<m<o+r, where 2 < j <r. Then we take
such j and use (Ob3). Note that 3¥ = v —a} and e. < e;. For the former case, we
have \;_1 = j —1 and \; = —1; for the latter case, we have \;_; = 0 and \; = —j.
Hence, we always have M = A\;_; — A; —j = 0. By the induction hypothesis again,
we have Z;ﬁ ppep < 0. If “<” holds, it is already done. If “=" holds, we have
p1 == pj—2 = 0 and consequently ;1 < 0. For the former case, we conclude
tj—1 = 0 and consequently 1; < 0, by noting 0 > p1;_1 = kj_1+(j—1)—(i;—1) > 0.
For the latter case, we have pu; = k; — ;1 + (—j) < 0. Hence, we always have
(Ml, ey Mg—2, Hy, Mj—l) < (O, ce ,O). Thus (LQ) holds.

It remains to consider the case when (3) of Proposition 3.22 holds. That is, C9)
occurs and v = By + BY. Then we just take a; = 84 and use (Obl). Thus (L2)
still holds. (|
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3.4. Two consequences. In this subsection, we derive two propositions with the
help of our notion of virtual coroot.

Proposition 3.23. Let w € WP and 1 < j < r. Then o% x 0% = g% +
ZM’A b AGAT" with gr(ghw) < gr(us;) whenever by, x # 0.

Proof. Clearly, ¢(us;) = ¢(u)+1. Thus Nfsjj’o = (xj,af) = 1 by quantum Cheval-
ley formula (Proposition 2.2). We need to analyze the remaining non-zero terms.

If {(usy) = €(u) + 1 and (x;,7Y) # 0, then we have gr(us,) < gr(u) + gr(s;)
by part a) of the Key Lemma. Note that gr(us;) = e; + {(u)e,4+1. If the equality
holds, then we have us, = wvs; where £(v) = f(u) and v € WF. By Lemma
2.5, an expression of u € WF is obtained by deleting a simple reflection from a
(fixed) reduced expression of vs;. Note that this simply reflection cannot come
from v. (Otherwise, we denote by © the element obtained by deleting such simple
reflection from v. Then u = ¥s; and we would deduce a contradiction, saying
14 4(u) = l(usj) = £(0) < £(v) = {(u).) Thus u = v.

If l(usy) = L(u) +1— (2p,7Y) and (x;,7Y) # 0, then we have gr(g,vusy) <
gr(u) + gr(s;) by part b) of the Key Lemma. Furthermore, we have {(us,) =
{(u) — 1 whenever (a,7") > 0, by Lemma 3.8 and Lemma 3.9. Since u € WF,
l(usp) = L(u) + 1 for any «,, € Ap. If the equality held, then we would deduce a
contradiction as follows (mainly by finding o € Ap satisfying {(a, ") > 0).

Note that £(s,) > 1 (otherwise, we would conclude v = o; € Ap).

We first assume 7 > 2 and write gr(us,) = (ki,---, kr+1) and gr(g,v) =
(A1, Arg1). Since the grading equality holds, we have k, + A, = d, ; for each
1 < p <r. As before, we discuss all possible coroots by using Proposition 3.22.

When (1) of Proposition 3.22 holds, vV has a virtual coroot 4V = Z;Jr} Eply
satisfying one and only one of the followings (from the proof of Proposition 3.16).

a) (€1,--+,641) = (0,---,0). In this case, we have gr,(¢,v) = 0 and gr,(us,)
= gry(u). In particular, we have k; = \; = 0, deducing a contradiction:
1=6;;=kj+X =0+0.

b) 4V = Z;nﬁ P&y —mtp, where 0 < m < 7. Then we have gr,(g,v) =
gre(gsv) = (m—=r) 32 . epand (ap,7") = 0forp € {1,--- ,r}\{r—m}.
Note that gr,._m_l(q,yv) = 0 and gry—m—1(usy) = grr—m-1(u) = 0. If
J < r—m—1, then we would deduce the contradiction 1 = d;; = ki +
)\] =0+ 0 agaln If j = r — m, then we still deduce a contradiction:
1=96;, 7k +)\ =k +m—1r <0. Hence, we conclude j > r — m.
Then we haver >j>j—1>r—m >0 and (a;,7') = 0. Thus
we have kj = 0;; —A\j = 14+7—m, kj1 = 8,1 —N\j1 =7 —m
and consequently k; = kj_; + 1. Hence, we have £(us,s;) = l(us,) — 1
by Proposition 3.4. Then by Lemma 2.5, we conclude us,(a;) € —R™,
contrary to us,(a;) = u(a;) € RT.

c) Z;tll Cplyy = Mdiqq + Zp 1 P&i—mp, where 1 < m < 4 < r. Then we
have (a;,vY) = (&;,%") > 0 and therefore deduce a contradiction.

When (2) of Proposition 3.22 holds, we have vV = Z;’;d By where 0 <m < o+r
and d < m. Since (x;,7Y) # 0, we conclude m > o+r. Thus we find o = 8,, € Ap
that satisfies («,7") > 0. Hence, we deduce a contradiction in this case.
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It remains to consider the case when (3) of Proposition 3.22 holds. That is, C9)
occurs and vV = 8y + 3Y. In this case, we note r = 2 and deduce a contradiction,
saying —4 =Xy =09 —ky >0—2=—2.

Hence, our assumption that the grading equality holds is not true, when r > 2.

Now we assume 7 = 1. Then o; = «o; and we have A= {(a1,7Y) by Corollary
3.13. If \; > 0, then we find a contradiction by taking « = a3 € Ap. If AL <0,
then gr1(gv us,y) <04k <1=gri(us;) and consequently the grading equality
does not hold. If \; = 0, then k; = gri(usy) = gri(u) = 0 and consequently we
deduce the contradiction 1 = d;; = k1 + )\1 =0+0.

Due to quantum Chevalley formula, we have discussed all the non-zero terms for
the quantum product o" x 0% . Hence, the statement follows. ]

By Theorem 1.2, we obtain a filtered-algebra structure on QH*(G/B), which
induces an associated graded subalgebra along the Ze, ;; direction. Thanks to the
Peterson-Woodward comparison formula and our definition of gr(g;)’s (with the
help of PW-lifting), we wish to obtain an algebra isomorphism between QH*(G/P)
and (at least a subalgebra of) this graded subalgebra. For this it is necessary
that the gradings of ¥)a A, (1, ¢xp)’s, which are canonical candidates in QH*(G/B)
playing the role of the polynomials ¢y,’s in QH*(G/P), are in Ze,41. Indeed, the
Peterson-Woodward comparison formula, together with our definition of gr(g;)’s,
has shown that gr,(¥a,ar(1,¢xr,)) = 0 whenever ¢x, € QH*(G/P) occurs in the
quantum product o xp 0¥ for o, 0¥ € QH*(G/P). However, apparently it does
not tell us about the behavior when the degree of ¢y, is large. Therefore we need
the following proposition for later use.

Proposition 3.24. gr,.(Ya ap(1,¢r,)) = 0 whenever gx, € QH*(G/P).

The idea of the proof is as follows. We write YA a.(1,¢xr,) = grpwpw’ as before.
The case when r = 1 is easy to handle. When r > 2, we can use our notion of virtual
coroot to obtain A and consequently wpw’ and gr,(gx, ). More precisely, we write
Ap =N + QY with X = Zangp aaa. Consider a virtual coroot A’ of X, then we
can easily write down the element X' +3°7_, a;4 associated to X' +Q% € QV/QY,
where QY := @]_, Za). For instance the case of mfBY,, .| + Q% has been studied
in Lemma 3.18. By our definition of virtual coroot, we conclude \ + Z:Zl a;a is

the element that we expect. In addition, we also show a;’s are indeed non-negative
so that gy 5r  aay € QH*(G/B).

Proof of Proposition 3.24. Write Ya ap(1,qxp) = @rpwpw’. When r = 1, we have
gr1(qrs) = (a1,AB) =: k1 by Corollary 3.13. Thus k; € {0,—1} following from
the definition of Ap. If ky = 0, then Ap/ = {1}, implying w’ = s1 = wp and
wpw' = 1. Thus gri(gx,) + gri(wpw’) =0+ 0 = 0. If, k&, = —1. Then we have
Apr =0, implying wpw’ = s1 -1 = s1. Thus gri(qr,) + gri(wpw’) = —-1+1=0..
Hence, the statement holds when r = 1.

Now we assume r > 2. We consider the virtual coroots and introduce some
special elements in Qv first. Denote u,, = ZZI 1 k60+r+1 mik- Whenever o > 0
we denote vy, = Spy (m — k)BY , and o = 520 BY where 1 < m < 7+ 1.
By direct calculations, we conclude gr,(¢,) = 0 and (qj,z) =0forall 1 <i<r
whenever = pi,11, Vp41 or p. That is, p,41, vr41 and p are all virtual coroots of
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0 € QV. Furthermore for 1 < m < r, we have

qry qym =—mz _le]—i-z k—i—l)ek (k: 1 ek 1 :—mzk m

and g7, (qp,, ) = —(r+1-=m)> 5 _ 1, e (by Lemma 3.18).

Write A\p = N + QY with X = Z; V0387 4+ 1 bjB8) . From Table 4,
we obtain a virtual coroot \' = 77 i BV of X in which we note b, = b, and
o+r+1<n If b, < b0+,+1, we set y = boo + afir41 + i where po := 0 and
bo+r+1 by = a(r+1)+m with 0 <m < r and a > 0. Slmllarly if b, > bo+r+1,
we set y = bo+r+1g + avyy1 + vy where vy := 0 and bo — bo+r+1 =a(r+1)+m
with 0 < m < r and a > 0. Clearly, we can write y = boﬁo + b0+,«+1ﬁo+,«+1 +
Zi:l d;c¢;. Note that 51\7/ is a virtual coroots of 0 € QY whenever p < oor p >
o+ 1+ 1. Thus we conclude y is virtual coroot of Ag := XN + 37 (d; — 50+i)ai.
Furthermore, we note that for all a;; € Ap we have (a;, Ag) = (&, y) = (G4, x) =
{ (1): gtﬁér;vig: (resp: rsim) where & = vy, (vesp. fim), if by > boyri1 (vesp.
by < 504_,«4_1). Hence, A\p is the very one associated to Ap that we are expecting.
Correspondingly, we can directly write down Aps as well as gr(wpw’) = —gr,(qz)
by Lemma 3.6. Note that gr.(gx,) = g7r(¢z). Hence, gr(gr,wpw’) = 0.

Since g, € QH*(G/P), b; > 0 for each j. It remains to show ¢\, € QH*(G/B).
That is, we need to show d; — 504_1- is non-negative for each 1 < ¢ < r. Clearly,
only the part 337, . b;3] of X' make contributions for the part }/_, l;iﬂ-(\)q_r of
the coroot \ of \. From Table 4 we see that bo+1 < bo+2 <... < l~)o+r+1. Thus
if b, > b0+,+1, then we have d; — bOH > — b0+,+1 > 0 for each 1 <7 < r.
Now we consider the case when (0 < b, 7)50 < l~>o+r+1 and then note that all
d;’s are non-negative from the way we obtain them. From Table 4 and Table 2,
we can make the following observations. (i) If case C1),C9) or C10) occurs, then
the virtual coroot )\ does not make contributions on these l~>o+i’s. That is, we
have d; — 504_,« =d; > 0 for each 1 < ¢ < r. (ii) For the remaining cases, we
have 50+1 = .. = 504_,«_1 =0< 250+,. < 504_,«4_1, except for the case when C4)
occurs with > 5 and o+ r = 7. (iii) For the only exceptional case, we have
604_1 = 604_2.: = 65 =0, 66 = bg7~ 67 :~2b8 an_d 68 = 3bg > O; Recall
that >0, difoti = boo + aftrs1 + pm — (boBo + botri1Botri1) in which boypy1 =
bo+ a(r+1) +m. When (ii) holds, we have d, — by, > by +ar+ (m —1) — by, >
Eo—i—ar—l—m—l—[m] >ar+m—1— [%ﬁb”] = ar—i—m—l—[%] >0,
and note d; — by; = d; > 0 for 1 < i < r—1. When (iii) holds, we have
bs >0+ a(5 +1) +0 so that a < . Since a is an integer, a < [%]. Thus we have
dy = botr > by +ar+m71—2b8fbgfa—172bgfbgfa—1>b8—[b8]—1>0
and d, 1—b0+7 1> b +a(r—1)+m 2—bg = bg—2a 2—bg = 2([)8—0,—1) > 0.
For 1 <i <r—2, we have d; — b,+; = d; > 0. Hence, we do show d; — bO_H > 0 for
1 <4 <r for all cases. O

Remark 3.25. In [18], Lam and Shimozono have given a combinatorial description
of Ap. In our case when Ap is of A-type, we obtain another way to describe \p
and to show the property qx, € QH*(G/B) in the above proof.
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3.5. Proof of the Key Lemma for general Ap. In this subsection, we assume
Ap is not of A-type. We give the proof of the Key Lemma, after describing the
formulas for the gradings of all g;’s. Recall that ¢ =7 — 1 and in this case we have
replaced r with ¢ in Table 2, in order to fix the order (Ap,T). In particular, we
have kK = o+ ¢ in this subsection.

Using Definition 2.8 with respect to the ordered subset Ac = (aq, -+, ac) of
(Ap,T), we obtain a grading map

gr=gra.: W x Q" — 7t

That is, we define gr(w) = ;: £(vj)e; using the decomposition w = ve410c - - - U1
of w € W associated to ordered subset A. = (ay, - ,ac), define gr(q1) = 2ey
and define the remaining gr(g;)’s recursively with the help of PW-lifting {¢)a, a,,
Vag,Aer s ¥aca. 1, ¥aat. Let o ZeT = Z" < Z"1 be the natural inclusion.
Thus we obtain a map to gr : W x Q¥ — Z™+!, which we simply denote as gr
whenever there is no confusion.

As a direct consequence of the definition of gr, we can apply Proposition 3.10
and Proposition 3.12 with respect to the ordered subset A, so that we have

Lemma 3.26. gr(q;) = gr(q;) for each 1 < j < ¢+ 1. Precisely, gr(q1) = 2ex;
gr(q;) = (1 —jlej—1 + (14 j)e; for 2 < j < ¢; gr(ge+1) is obtained by directly
replacing v with . (Only case ¢), d), e) or f) in Table 3 can occur.)

Furthermore we note from Table 2 that either o > 1 or x +2 < n must hold. For

any a € A\ (Ap U{Bo, Brt2}), we have gr(gav) = 2e,41 < 2ec11 = gr(qav). For
Ap € QV/QY, we write ) ,wpw’ = 1¥a a,(1,Ap) as before.

Lemma 3.27. Suppose p € {0,k +2} N{1,--- ,n}. Set A\p = B +Q}. Then we
have \p = ﬂg except for either of the following cases.

(1) p=o0 and {8} UAp is of C-type. In this case, \p = B + >, a.

(2) p=r+2 and C9) occurs. In this case, Ap = B o+ ) 1 + ).
Furthermore, we write gr(qsy) = Zgii djej~ and gr(gsy) = Zgii dje;, and denote
Ap={acAp|{a,B)) =0} Thend; =d; for 1 <j << and we have

a) 97(gsy) < Gr(asy); b) dry1 < Llwwp) +1;¢) D

Proof. Let 0p = 2;21 ajo; denote the highest root in Rp. Note that {(wpwp) =
[Rp| = |R|, U(wwp) = |RT| — |Rp| and Apr = {a € Ap | (a, Ap) = 0}.

We first assume p = o and note that gr(gsy) = (s +2)ecy1 — Z;Zl e;.

Whenever {8,} U Ap is not of C-type, we note (Table 2 and [12]) that a; = 1,
(a1, BY) = —1and (o, B)) = 0 for 2 < j < r. Hence, we conclude A\g = ), Ap: =
Ap = Ap\ {a1} and consequently we have w’ = wp and gr(gsy) = ({(wpw') +
2)e,; 41 — gr(wpw’). Hence, dy41 = l(wpw') +2 < l(wwp)+ 1 by direct calculations.
Write wpw’ = vyu, where v, € Wh* and u = Wp_. Then we have u(cy) € R;g
for all aj € Ac N Apr = A\ {a1} (otherwise, we would conclude v,u(a;) € —RY,
contrary to wpw’ € W};'). Noting u(ag) € —R™*, we deduce u = sy, - - - 5351 for some
1 <k <g, by Lemma 3.6. If Ap is of B-type (resp. D-type), then we conclude
wpw' = vp8¢ -+ 81 with v, = 15, (resp. v, = s1---8,_28,) by easily checking
such element satisfies the condition in Lemma 3.5. If Ap is of E-type, we note that
Sc- - s1(ar) = u(ay) + Z;=k+1 bja; for non-negative integers b;’s. Consequently,

. dj < —l(wpwp).
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we have vys.---51 € WE and £(v,sc -~ s1) = L(vpu) +¢—k = L(wp) — (W) +<—E.
Thus k = ¢ by Lemma 3.5, implying ¢(v,) = ¢(wpw’) — ¢. For all these cases, we
deduce gr(wpw') = ({(wpw') —)ecs1 + > 5 e;. Hence, dj = —1 for 1 < j <,
d, = ¢ —L(wpw') and gr(gsy) < gr(qpy). Thus Z;Zl dj = —L(wpw') = —L(wpwp).

Assume {3,} U Ap is of C-type, in which case there are only two possibilities
saying (i) case C1) with A being of C-type and (ii) case C10) with » = 2. Then Ap
itself is of C-type. Thus we have {(wpwp) =1 — (r — 1) = 2r — 1 and {(wwp) =
n® —r? > (r+1)% —r? = 2r + 1. Furthermore, we conclude Ap = 8 +>7_, o/,
by noting such element satisfies (o, Ag) = 0 for each 1 < j < r. Thus Ap, = Ap,
wpw' = 1 and then gr(gpy) = (2 +4)ecr2 — (s +2)ecy1 — 25, ; by definition.
In particular, we have gr(qsy) < gr(qpy ), dry1 =25 +4 = 2r +2 < f(wwp) + 1 and
Z;Zl dj=dr —¢=-20—2=-2r < —l(wpwp).

Now we assume p = k+2, which holds only if case C5), C7), C9) or C10) in Table
2 occurs. Note that g"r(qghy”) = 2ecy1. If C9) does not occur, then we conclude
ar =1, (ar, B 5) = —1 and (a;, B¢, ,) = 0 for 1 < j <. Hence, Ap = ,,,
Ap = Ap = A; and consequently we have gr(qsy, ,) = (((wpwp) + 2)eci2 —
l(wpwp)ecyi1. Therefore, a), and c) follow, so does b) by direct calculations. If C9)
occurs, then |R*| = 24, |R}| = 72, |Ap| = @, n=4=r+2andr € {2,3}.
By direct calculations, we conclude A\g = 8Y + a)_; + «,/. Furthermore if r = 2,
then Aps = Ap and consequently we have gr(qgy ) = 6ec2 —4eci1. If r = 3, then

Apr = {ag,a3}. Consequently, wpw’ = $152838281 with gr(wpw’) = (1,1,3,0).
Hence, we have gr(gsy) = 1lecy2 — 9ecq1. For either of the cases, it is easy to
check all the statements hold. O

From the above discussions, we note that gr.(¢;) = gr (¢;) for all j. Using these
discussions together with Lemma 3.11, we obtain the following immediately.
. +1 - +1 7
Lemma 3.28. Lety € R+.~Wm{e gr(q,yi) =>"0 dje; and grigyv) = >2511 dje;.
Then we have d, + dp41 = dr + dpy1 = dy and dj = dj for each 1 < j <gq.

Now we give the proof of the Key Lemma as follows.

Proof of the Key Lemma. Let w € W and take its decomposition w = v,41---v1
associated to (Ap,Y). Suppose £(wsy) < ¢(w), then by Lemma 2.5 we conclude
WSy = Vpg1 - Umt1UmUm—1---v1 for a unique 1 < m < r 4 1, in which v, is
obtained by deleting a unique simple reflection from (a fixed reduced expression of)
U Set D = (gr(wsy) — gr(w)) — (gr(ws,) — gr(w)). If 1 < m < r, then we have
D =0 and v € Rp. Furthermore, we have gr(q,) = gr(g,) and gr(s;) = gr(s;)
whenever (x;,7") # 0. In particular, the Key Lemma holds for such ~, by using
Proposition 3.15 and Proposition 3.16 with respect to the ordered subset A.. If
m =7+ 1, we write U, 10, = U 10,1’ with 0,4, € WP, 5, € WII} and u' € Wp_.
Thus wsy = Upy1 -+ 01 With 0; € ng’l foreach 1 <j <r+1.

In order to show a), it remains to consider the case when m = r + 1. Set
w = us, and note that gr(us,) = ;=1 L(vj)e; + (L(vr) + L(vry1))er. Thus we
have —D = (£(vr41) — L(Ur41))er41 + (E(vr) = £(Dr) = L(vrg10r) + L(Trg10y))er =
(U(vp41) — €(Vry1))(€r41 — €r) < €441 — €. Note that v € R\ Rp (by Lemma
2.7). Therefore we have gr(us,) — gr(u) = —D + (gr(usy) — gr(u)) < e,41 — e, +
min{gr(s;) | (xi,7") # 0} = e,41 = min{gr(s;) | (xi,7") # 0}. Thus a) follows.

To show b), we set w := u in the rest of the proof and use induction on £(s).
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First we observe that gr(g;) + gr(us;) < gr(u) + gr(s;) for any 1 < j < n.
Indeed, this inequality holds if 1 < j < r with the discussion in the beginning.
If (a,a}/> =0 for all @ € Ap, then for v = a; we have m = r + 1, v, € wr
(by Lemma 3.2) and consequently gr(us;) — gr(u) = —e,41 = —gr(q;) + gr(s;).
Otherwise, we much have o; = 5, with p € {0,k + 2} N {1,--- ,n}. Then the
inequality still holds by using Lemma 3.29 a) (with v = 3,) and Lemma 3.27 c).

Now we assume v ¢ A. Take any simple root «; satisfying (a;,vY) > 0, and

write 8 = s;(7), gr(gsv) = (A, -+, Avr), min{gr(s;) | (xi, 8Y) # 0} = e. and
gr(qj) + gr(us;) = gr(v) + (a1, -+ -, ar41),
gr(apv) + gr(usjsp) = gr(us;) +ec+ (pa, -, piry1),
gr(usjsps;) = gr(usjss) + (br,- -+ bry1).

In addition, we use the notations ¢, a;’s, Ej’s and [i;’s, whenever replacing “gr”
with “gr” in the above three equalities. Then we have min{gr(s;)|(xi,7") # 0} =
min{e., gr(s;)} and by the induction hypothesis (u1,- -+, ftir41) < (0,---,0). Due
to Lemma 3.11, it suffices to show Z::l(ai +b; + p;)e; < 0. Furthermore, we note

that a,+1 = b7‘+1 = fir41 =0, thp+ptry1 = fir, €z > €. and ay = ag, by = br, i =
for each 1 < k <. Clearly, either of the followings must hold.
(i) Thereis 3, € Asuchthat pe {1--- ,n}\{o,k+1,k+2} and (5,,7") > 0;
(i) whenever 3, € A satisfies (8,,7") > 0, we have p € {0, + 1,k + 2}. In
this case, we note the constrain £(s,) = (2p,7") — 1 on v, which is deduced
from our assumption by using Lemma 3.9.

Suppose (i) holds. Then we just take any one such o; = B,. If p ¢ {o0,0 +
1,--+,k+ 2}, then (o, a}’> = 0 for all @ € Ap; consequently, it is done by noting
ar = b =0 for 1 < k < r (using Lemma 3.2) and e, = e,4;. Otherwise, there
exists 0 + 1 < p < o + ¢ such that (3,,7Y) > 0. Recall that a; = B4, for each
1 <i < r. For any one choice a; = 3, among such roots, we always have a; = b; = 0
fori ¢ {j—1,;j} and consequently D=7 | (a;+bi+pi)e; = D21, pie;. In addition
from the proof of Proposition 3.16, we can always take a certain o; = 3, among
such roots such that both e; < e; and >_7_, (a; + b+ ii)e; < 0 hold by considering
gr. Since j <r — 1, we have a; = a;, b; = b; and fi; = p; for each 1 <@ < j. Thus
for such a choice a; = B, both e, < ez < e; and Zgzl(ai +b; + pi)e; < 0 hold.
Hence, the Key Lemma holds for such v by using the induction hypothesis.

Suppose (ii) holds. Then the constrains are so strong that there are only very
few roots. We discuss all such roots with respect to each type of A and label the
method we will use.

Assume A is of B-type. (That is, part of case C1) in Table 1 occurs.) There
are only two coroots satisfying the conditions, saying 8Y ; + 2 Z;:Ol By + By (with
0o>2)or Y. BY. (See the proof of Proposition 3.22.)

(M1): For the former coroot, we note that Ap = {a € Ap | {a,7Y) =0} = A
and gr(gyv) = Z::ll die; = dy41 by direct calculations. Hence, Y ;_, d; =
0 = —¢(wpwp). Thus the inequality holds by using Lemma 3.29 a).

(M2): For the latter coroot, we take a; = f3,,; that is, a; = a,. Then ¥ =~V -3y

and gr(qgv) = dr+1€,41—rep+sec. Write gr(u) = (i1, ,ir4+1), gr(us,) =
(@, i), gr(usrsg) = (ki,-- ,kry1) and gr(us,) = gr(us,sgs,) =
(k{,-+ ,k.41). Noting that (a¢,a)) = (o, 8Y) =0for 1 <t <¢—1, we

conclude a; = by = py = 0 for ¢t < ¢ — 1 by Lemma 3.2 and consequently
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e < 0 by the induction hypothesis. Furthermore, we note that ac +a, = 1,
b + b, = =1, ac + by = =2¢ + i, —ic + kl — ke < 0. If a¢ + bg + pe <0,
then it is done. Otherwise, we conclude i, = k! = ¢ and i¢ = k¢ = pe = 0.
Consequently, we have a, + b, + pi = ptr = pic+1 < 0 and it is done.

Assume A is of C-type. (That is, part of case C1) in Table 1 occurs.) There are
only one such coroots, saying vV = >_"" Y. Thus the inequality holds by (M1).

Assume A is of D-type. (Case C2) is used.) There are only two such coroots,
saying Y, + 22;:02 BY + BY_1 + B (with o > 2) or Z?:_OQ BY + B). For the
former coroot, the inequality holds by using (M1).

(M3): For the latter coroot, we have gr(g,v) = 2re,41 + se, — ce. by direct
calculations. Using the notations of Lemma 3.29, we conclude Z:zl d; =0,
Aﬁ = {Bmﬁo-}-l; co 7Bn}; = {Bn}u{zzz_]? Bo+i+ﬁn | 1<k< 7“_2} and
Ep = {Bot+ ik Bit Buo1+Bn | 0+1 <k <n—2}U{X" Bi}. Note
that n = o+ r in this case. Hence, we have |21 — |S3] =r—1—(r—1) =
0= >."_, d;. Hence, the Key Lemma holds for v = >>7=7 Y 4 8 by using
Lemma 3.29 b).

It remains to discuss the cases when A is of either F-type or F-type. Since there
are only finite exceptional types (among which only a few roots satisfy (ii)) and the
arguments are similar, we leave the details in the appendix (see section 6).

Hence, the statement follows. O

It remains to show the following, which was used in the proof of the Key Lemma.

Lemma 3.29. Let u € W and v € RY \ Rp. Write gr(g,v) = Z;ii dje;. Then
Key Lemma b) holds, if either of the followings holds.

a) > dj < —l(wpwp), where Ap :={a € Ap | (a,7) = 0}.

b) 3751 dj < [Ei|—|Z2l, where By := {a € R} | (a,vY) >0} and Z9 := {a €

R;\Rp |a—y € R, (a,7Y) > 0} with Ap == ApU{a; € A (x4,7) # 0}.

Proof. Let w = vpy1---v1 (resp. usy = Upy1--- 1) be its decomposition associated
to (Ap,T). Since v € RT \ Rp, we have min{gr(s;) | {(xi,7") # 0} = e,4+1. Note
that gr.(gaw) = gr (gyw) for any gxw. Applying Proposition 3.16 with respect to
A, we have Z;;i(da +0(7)))e; < Z;;i l(vj)ej. If “<” holds, it is already done.
If “=” holds, we conclude Z;;i dj +0(0p—1---01) = €(vp—1---v1). Due to Lemma
3.11, we have S"F1(d; + £(5;)) = 2p, 7)) + L(usy) = 14+ £(u) = 1 + Z;:i 0(v;).

J
It remains to show d, + £(0,) < £(v,), or equivalently to show £(v,11) < €(Vp41) +

dr — 1= 0(Brgr) + (X5 dy — 1) = X0 dy = U(Brg) + () — X0, dj.

a): Since v, 11,741 € WF, we conclude £(v,. - --vy) = |A1| and £(D,. - - - T1) = | Ag]
where A1 := {8 € R} | u(B) € —R*} and Ay := {8 € R} | us,(B) € —R*}. Note
that us,(3) = u(B) for B € Rp. Hence, f € Az \ Ay only if B € R} \ Rp.
Thus |As| — |A1] < [A2\ A1| <[RS\ Rp| = l(wpwp). Consequently, we have
(@) = L(or) = (6T, B1) = Lo o)) + 521 dy = [Ao| = |Ai| + 2521 d; <
Uwpwp) + Y721 dj < —d,.

b): Since v,41 € WF and Ap D Ap, we can write v, 41 = vl 0., in which
vy € WP and vl € W}; C WP, Similarly, we write 0,41 = 0,0, with

U490 € WP and U4 € W};. Note that £(v;,,) = |A3| and €(;.,,) = |A4], where
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Az ={a € R; \Rp |u(e) € —R*} and Ay :={a € R; \ Rp | usy(a) € —R*}.
We claim As can be written as a disjoint union B; U Bs U Bs such that |B;| <
U(sy) — |21, B2 C Ep and B3 C Ay. Hence, (v, ,,) = |A3| = |Bi| + |Bz| + |Bs| <
U(sy) — |E1] + |B2| + £(D;.,1). Since v € Rp, we have 0], = v,.,5. Therefore
Uvr41) — 1) = 60 y) — 0 1) < Usy) — [Za] + Bl < £sy) — S0y dy.

It remains to show our claim. Clearly, A3 is a disjoint union of B;’s in which the
corresponding sets are given by By := {a € R+\Rp | u(e) € —=R*,5,(c) € —R*},

u(ar) € —RT, u(a) € —RT,
By :=({ae RI\Rp| s, (a )eR+ ,By = qacRL\ Rp| s,(a )eR+
(o, 7Yy >0 (a,7V) <0

Note that By C {aeR*\Rp | sy(@) € =RT} = {a € R} | s,(a) € —R"} —
{a € RP ‘ sy(a) € —R+} Since v € Rp, for any a € RJr we conclude that
sy(@) = a = (a,yV)y € —R" if and only if (a,yV) > 0. Hence, |Bi| < |{a €
R; | sy(a) € =R*}| = [{a € Rf | sy(a) € =RT}| = 4(s,) —|Z1]. It is obvious that
By C Ey. Since £(usy) < {(u), we have u(y) € —R" by Lemma 2.5. Consequently,
if & € Bg then we have us,(a) = u(a) + (—(a,v¥))u(y) € —R™, implying a € Ay.
Hence, B3 C Ajy. O

4. PROOFS OF MAIN RESULTS

In this section, we prove all the theorems mentioned in the introduction. Recall
that the proof of Theorem 1.2 has been given in section 2.3.

When Ap is not of A-type, we have denoted ¢ = r — 1. For convenience, we
denote ¢ = r if Ap is of A-type. Recall that A = {aq,---,ac}, P, = Pa_ and
QY = ®;_, Za) . (In particular when ¢ = r, we have P, = P and Q) = QY.)

Lemma 4.1. gr(Wp_ x QY) = @;_, Ze;, where we have treated Wp_ x QY as a
subset of W x QV naturally. Furthermore for any d = @;_, d;e;, we have

(1) d = gr(wgy) for a unique wgy € W x QY. In fact, wgy € Wp. x Q..

(2) Take the unique wqy as in (1). Then wgy € QH*(G/B) if d; > 0 for all i.

Proof. Define a matrix M = (mm)gxg by using the gradings gr(g;)’s. That is,
we define 335_ m; je; = (1 —i)e;1 + (1 +i)ei(= gr(g)) for each 1 < i < .
Note that M is a lower-triangular matrix. Hence, there exist unique sequences
a= (a1, - ,ac),b= (b, - ,b) of integers such that d = aM + b and 0 < b; <
m;; —1 =1 for 1 < i <g¢. Furthermore if d; > 0 for all ¢, then we conclude a; > 0
for all 4, by noting m; ; < 0 whenever j < i. Since Wlf“ {uk) | 0 <k <i},

each 0 < b; <1 corresponds to a unique element in I/VP“’1 say uy) Hence, we find

a unique (w,\) = (u, () ubl) Yi_jai)) € Wp. x QV such that gr(wgy) = d;
furthermore, wq), € QH* (G/B) Whenever d; > 0 for all 7.
It remains to show gr(ug,) ¢ @;_, Ze;, whenever (u,p) ¢ Wp. x QY. Indeed,
it follows directly from Definition 2.8 that grix,41](qav) = zrer with zx > 2,
whenever o« € Ay, \ Ag_1. Take the decomposition u = v,41---v1 of u associated
to (Ap, ) and note that gr(ug,) = @:Jrll L(v;)e; + gr(gy). Thus if gr(ug,) €
| Ze;, then we have £(v,41) = 0 and p € Q% (= Q). When ¢ = r, it is done.
When ¢ =r—1, we proceed to conclude ¢(v,) =0 and p ¢ QY \ QY. Thus u € Wp,
and € Q. O
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Proof of Lemma 2.12. We need to show for any ¢, u, ¢,v € QH*(G/B) there exists
pw € QH*(G/B) such that gr(guu) + gr(q.v) = gr(gaw). Note that gr(q.) +
gr(qv) = g7(qu+v) and gr(qg,) + gr(u) = gr(guu). Thus it remains to show gr(u) +
gr(v) € S. It suffices to show x = (21, ,z,41) € S for any x € (Zxo)" 1.

We first assume ¢ = r. Take any simple root in Acy; \ Ac(= A\ Ap), saying a.
From Table 3, we conclude gr(g,v) = Z:ll die; with 2 < dc 1 < 14+Ll(wp,,,wp,)(=
lwwp) + 1) and d; <0 for i <. Since xcy1 > 0, we can write c11 = acy1dey1 +
bet1 for unique acy1 > 0 and 0 < by < l(wp, ,wp,). Note that {(wp_, ,wp, ) =
max{{(v) | v € WIIDD:H} so that we can choose vy € W};:H satisfying l(vey1) =
bet1. Furthermore, (21 — acy1dy, -+ ,2c — acp1dc) is again a sequence of non-
negative integers. Thus it is the grading of a unique (w',\) € Wp_ x QY with
qv € QH*(G/B) by Lemma 4.1. Set w = vepqw’ and A = acy1a” + N, Then
wqy € QH*(G/B) is the element as required.

Now we assume ¢ = r — 1. By Lemma 3.27 there exists o/ € A\ Ap such that
gr(qarv) = Z::ll die; with 2 < d;.,; <1+ /l(wwp) and dj <0 fori <r =c¢+1.
Repeating the above discussions, we can reduce it to the question of finding a
element in gpyw € Wp_,, x QY with gxw € QH*(G/B) and the grading of it being

equal to ::11 x}e; for given non-negative integers «;’s. Thus the statement follows
by using the same arguments again. O

Remark 4.2. Z>oe, 41 is a sub-semigroup of S. Indeed, we can take o € A such
that griy41,,41)(Gav) = dryr€ry1 with 2 < dpyy < 1+ L(wwp), from the above
proof. For any ¢ € Z>o, ¢ = adyy1 +b with 0 < b < d,y; — 1. Then we can
choose v € WT such that £(v) = b. Note that —gr(qaav) = Z§=1 x,e; with x;’s
being in Z>o. Hence, it is a grading of certain element g\u € QH*(G/B) where
(u, A) € Wp X QY. Then qaavirvu € QH*(G/B) and its grading is equal to ce,41.

The next lemma proves the first half of Theorem 1.3.
Lemma 4.3. The subspace T defined in Theorem 1.8 is an ideal of QH*(G/B).

Proof. We need to show for any ¢,u € Z and ¢v € QH*(G/B), the product
qut * QU = Zw,/\ st’;quAJr#erw also lies in Z. That is, we need to show d,;11 > 1
where gry 1 r41](@ 4 prvw) = dry1€041, Whenever ijf;j\ # 0. Clearly, this is true
if either p or v lies in QY \ @Y, which follows directly from Definition 2.8. When
pv € Qp, we must have v € W\ Wp. Then we shall gr, 1 ,11)(paw) > e,41
whenever N;‘j;f‘ # 0, by using induction on £(v).

If £(v) = 0, then v = id and it is done. If ¢(v) = 1, then v is a simple re-
flection and therefore we can use quantum Chevalley formula (Proposition 2.2).
When ((usy) = £(u) + 1, we take the decomposition usy = v,41 - - - v1 associated to
(Ap,T), and note u is obtained by deleting a reflection in some v,,. Since u ¢ Wp,
we conclude v,11 # 1. In particular, we have gryy1,,41(us,) > e.11. When
U(usy) = L(u) +1 = (2p,~"), then we also conclude grpi1,,41)(¢yvusy) > eqq1, by
noting gri.41,r417(qvusy) > grips1e41)(Usy) = gripsrryny(u) > eqqr if v € QF,
and gripq1,041) (@ v usy) > grpi1r41)(@yv) > 2e41 if v € Qp. Thus if £(v) = 1,
then ¥ *Z C Z. Now we assume £(v) > 1. By Lemma 2.13, there exist v € W and
1 < j < n such that gr(v) = gr(v') + gr(s;) and 0¥ x 0% = co¥ + D w x Co AW,
where ¢ > 0 and the summation is only over finitely many non-zero terms for which
cw,x > 0. In particular, we have ¢(v") = ¢(v) — 1. Using the induction hypothesis,
we have 0¥ «Z € Z. Thus (co’ + D w Corpw) x L = 0% x (0¥ ) C Z. Since all
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the structure constants are non-negative, there is no cancellation in the summation
on the left hand side of the equality. Hence, we conclude o¥ xZ C Z. O

It remains to show the second half of Theorem 1.3. There are combinatorial
characterizations of QH*(G/B) (see e.g. [25]), or more generally on its torus-
equivariant extension [26]. In particular, intuitively, Q H*(G/B) should also have a
non-equivariant version of Mihalcea’s criterion [26] for torus-equivariant quantum
cohomology of G//B. That is, an algebra (B, .y Q[g]o®, *) should be isomorphic
to QH*(G/B) as algebras, if it satisfies quantum Chevalley formula together with
some natural properties (e.g. commutativity and associativity). However, we did
not find any explicit reference for this. In our case, we obtain a natural algebra of
this form which has one more (strong) property saying that (.. Q[g]o", *)|q=0
is canonically isomorphic to H*(G/B). Thus it becomes easy to show the algebra
isomorphism (by using induction). We would like to thank A.-L. Mare and L. C.
Mihalcea for their comments for such a criterion and the proof.

Proof of Theorem 1.3. Due to Lemma 4.3, it remains to show QH*(P/B) is canon-
ically isomorphic to QH*(G/B)/I. Note that P/B is isomorphic to the complete
flag variety determined by the pair (Ap, (). Hence, QH*(P/B) has a natural basis
of Schubert classes {c" | w € Wp} over Q[qi, - -, ¢;], and the formula of o* 5 o
(where w € Wp and «; € Ap) is directly obtained from Proposition 2.2 by re-
striction of v € A to v € Ap in the summation. Here we denote the quantum
product of QH*(P/B) by %, in order to distinguish it with the quantum product
*of QH*(G/B). On the other hand, QH*(G/B)/Z has a natural algebra structure
induced from QH*(G/B). Thus it is also commutative and associative, and we
denote the product of it by the same x by abuse of notations.

It is clear that for any wqy € W x QV, 9rir41,r41) (W) = 0, ie. wox € Z, if
and only if wgy € Wp x Q). We define a map ¢ : QH*(G/B) — QH*(P/B),
given by ¢(qx) = g if wgy € Z, or 0 if wgy € Z. Clearly, ¢ induces a natu-
ral isomorphism @ of vector spaces, ¢ : QH*(G/B)/ZI — QH*(P/B), given by

o(wax) == ¢(wgy). In particular, it is easy to check @g(c% x 0%) = 0% %5 0%
for any o, € Ap. It is a well-known fact that QH*(P/B) is generated by
{o% | a« € Ap} over Q[q1, - ,¢]. Thus it is sufficient to show QH*(G/B)/T is
generated by {o°> | & € Ap}. Since our filtration on QH*(G/B) generalizes the
classical filtration on H*(G/B) (by Proposition 2.14) naturally, Q H* (G/B)/I‘quo
is canonically isomorphic to H*(P/B) as algebras. In particular, it is generated
by {c°t,--- o5} with respect to the induced cup product. Hence, the statement
follows by using quantum Chevalley formula and induction (for instance one can
follow the proof of Lemma 2.1 of [30] exactly). O

Remark 4.4. For the classical case, the induced map i* : H*(G/B) — H*(P/B)
is given by i*(c™) = o™ if w € Wp, or 0 otherwise. And the ideal I is given by
I =Q{cY | w=vuwithu € Wp,v € WF v # 1}. Note that for any w € W,
w ¢ I if and only if griy41,r41)(0") = 0. Clearly, T is a q-deformation of I and ¢
is a natural generalization of i*.

Lemma 4.5. Let w = v,41---v1 be the decomposition of w € W associated to
(Ap,T). For any 1 <m <g, the followings hold.

(1) If L(vm) < m, then there exists v € RT such that (xm,v") = 1, {(ws,) =
lw) +1 and gr(wsy) = gr(w) + epn,.
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(2) If L(vy) = m, then there exists v € RT such that (xm,v") = 1, {(ws,) =
U(w) +1—(2p,7") and gr(gyvwsy) = gr(w) + em.

Proof. Note that Dyn({aa, - ,ac}) is of A-type. We have v, = uif) with iy =
£(vg) whenever 1 < k <.

(1) If iy, < m, weset v := (V1 v1) " H(Qn—i,, + Wm—i, +1+ "+ ). Then
is of the form «,, +Z;”:_11 aja; € R. Thus v € R* and (x,7") = 1. Furthermore,

we conclude wsy = vp4q - ~vm+1u§:ilvm,1 -++-v1. Thus (1) follows.
(2) Denote k = 1+ max{j | ¢; = 0,0 < j < m — 1}, where iy := 0, and set
¥ =+ ok + o+ ay, € RY. Clearly, (xm,7") = 1. For each j < m, we

denote v; = a; + 11 + - - + Q. Then v = 41 + o = $;(7;41). Thus for any
(]) (4) (3—1) (3-1) (4)

j = 1 we have Uiy Sy = Wiy S5Svy00 87 = Uy 1 S0 85 = Sy Uqy 1785 = Sy Uy
Furthermore, we have S§189 - sjugj,) (J) 15152 --sj_1 by Lemma 3.3. Note that
J
Y = Yk, Ym = Quy and denote u = vy, - . Hence,
(CONNINC) (k=2) @) m) (k+1) u® k=2) @
US'Y 7“ m ' Zk S'qu’tk P ! 11 lm ’ u1k+1 S'Yk+1 Tk S’yuik72 ’ 11
_ . (m) (m=1) k), (k=2) (1)
S U, Sy Wy, Uy Uy Uy
(m—1) (k), (k—2) (1)
= 8182 Smo1Uy, U W Uy
(m—1) u® (k=2) @
ulm 1—1 o ’Lk 1(81 e Skfl)uikfg : ’Ll :

Note that i, = m and i; = ¢(v;) for j <. Thus
U(wsy) = Zf;ﬂe(vp) + (Z;’i 1(' —1))+k—-1+ Z
= Z (m—Fk)+k—-1-
=l(w )+ 1- 2<p, (o + ~~~+am)v> ={(w)+1-(2p,7").
Furthermore, we conclude gr(g,vwsy) = gr(w) + en,, by noting that 4,, = m,
iv-1 =0 and gr(g,v) = (1 — k)ex—1 + (m+ Den + 375 €. O

Since QH*(G/B) has an S-filtration F, we obtain an associated S-graded al-
gebra Gr* (QH*(G/B)) = @,c5Gri, where Gr{ := Fa/ Up<a Fy. For each
j < r+1, we denote Gr]'-  (QH™(G/B)) = D,>o Gr]'- Note that for the iter-
ated fibration {P;_1 /Py — P 5/ Po — Pj/Pj_1 ’“'H assoc1ated to (Ap,T), we have

Poi1/P, = G/P and P;/Pj_1 = PJ whenever ] < ¢. Take the canonical isomor-
phism QH*(P*) = {Qﬁ%"} for each k <. Then we can state Theorem 1.4 more

concretely as follows (in which we denote u( )= 1).

Theorem 1.4. There exist canonical isomorphisms Wy ’s of algebras as follows.
Fork <g, VU, :QH*(P*) — Gr{;;)(QH*(G/B)); xp ug )t qku,(ck 11).
Voot : QH Py [P.) — G (QH(G/B)): qan, 0" = D a(ar 0"):

In particular if Ap is of A-type (i.e. if ¢ = r), then we have P.41/P. = G/P,
A1 = A and A. = Ap. Thus in this case, Theorem 1.4 gives an isomorphism
QH*(G/P) = Gr{,,,,(QH"(G/B)).
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Proof of Theorem 1.4. By Lemma 4.1, for any a € @j.:l Ze; there exists a unique
o € QH*(G/B) such that gr(gyu) = a. Thus dimg Gr] =1 and Gr] = Qg u.
Then we simply denote Aa := qxu. In particular, we conclude Aa x Ae;, = ¢jAare,
whenever j < ¢. Furthermore, we have ¢; = 1 by Lemma 4.5. When {(v) > 1,
there exists v € Wp_ satistying gr(v’) + gr(sp) = gr(v) with p < ¢ by using Lemma
4.5 again. Thus by induction on ¢(v), we conclude Aq x Ay () = Aajgr(v) for any
v € Wp_. Hence, Aq x Ap = Aayp for any a,b € 692:1 Ze;. As a consequence, we
obtain a canonical isomorphism Q H*(P¥) = Gr(},;) (QH*(G/B)) foreach 1 <k <,
(k—1)

given by xp — ugk) and tp — qruy,_

To analyze Uci1, we need to compare the algebra structure of QH*(P.11/F;)
with the filtered-algebra structure of QH*(G/B). Note that if ¢ = r — 1 then
P..1/B = P/B. Due to Theorem 1.3, essentially we need to compare QH*(P.41/P;)
with QH*(P/B) by using Peterson-Woodward comparison formula in this case.
Thus without loss of generality, we can assume ¢ = r in the rest, which is of main
interest to us and can bring convenience on the notations.

Denote the quantum product of QH*(G/P) by xp. Write Ya,ap(@rp0?) =
0P where qrp,0” € QH*(G/P). Then we have gr.(q,0"“"*") = 0 by
Proposition 3.24. On the other hand, if gr,(¢g\xc¥) = 0 with A\p = A + Q) and
u € Wp, then we conclude gr(gr,— wpw’) = gr(u) where \g — X\ € QY. By the
uniqueness (from Lemma 4.1), we conclude A\g = A and wpw’ = u. Hence, ¥, ;1 is
an isomorphism of vector spaces.

By Proposition 2.1, we have ¥,.11 (0% xp 0¥) = U, 1(c") * ¥,.11(c") for u,v €
WP, To show ¥, is an algebra isomorphism, it remains to show (i) ¥, 1(qx, *p
Qur) = Yrp1(@ap) * Yri1(qup) and (i) Wrpa(gap *p 07) = Wrga(gnp) * ¥rga(0”).
For (i) we write A\p = N + QY and up = p/ + Q) where X,y are elements in
@aeA\AP ZaV . Note that IT 41,741 (gv) — ITlr41,r41] (grpwpw’) = 0. Hence,
O pwpw = quva with 2 being the unique element in Wp x Q% determined by the
grading —gr,(\') =: a. Similarly, we A Ap(qup) = quy and YA ap(@rpiup) =
qn 4wz Where gr(y) = _grr(qM’) =:bandgr(z) = _grr(q/\’-i-;t’)- Hence, W,.11(gxp )*
\I/’!‘-i-l(q;tp) =qQNT X QY = Qv * Aax Ap = Qntp * Aa+b = lI/7‘+1(q)\P+ltp)' For
(ii), we first conclude o7 0% = 75 where 1 < j <7 and v € W, by Proposition
3.23. Thus by induction on ¢(u) where u € Wp, we conclude 0% x 0¥ = og%%. As a
consequence, (ii) follows. Hence, ¥, ;1 is an algebra isomorphism. O

As a consequence, we obtain the following.

Theorem 1.5. Denote I' := {gr(qg\w) | gr(gaw) < 0,qyw € QH*(G/B)}. Let A =
Gagr(qWW)eZe,.HUp Qqro™ and J = @gr(qu)er Qqro®. Then A is a subalgebra
of QH*(G/B) and J is an ideal of A. Furthermore if Ap is of A-type, then there
is a canonical algebra isomorphism:

QH*(G/P) = A/T;

Dp0’ = Yanp(@npo’) + .

Proof. Note that for any gro® € QH*(G/B), gr(qg\c") € Ze,+1 if and only if
gr(gao™) € Zsoery1. Clearly, Z>pe,11 UT is a sub-semigroup of S. Hence,
A is a subalgebra of QH*(G/B), due to Theorem 1.2. From Definition 2.8, we
note griy11,r41)(@w) > 0 whenever gxw € QH*(G/B). Thus for such element,
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gr(gyw) < 0 if and only if gr.(¢gyw) < 0. In particular, we conclude 7 is an ideal
of A, by use Theorem 1.2 again. As a consequence, we obtain a natural isomor-
phism A/Z —» GTZ;H)(QH*(G/B)). Hence, the statement follows from Theorem
1.4. O

Remark 4.6. In fact, A =J,~ Fie, . If we use the Z" -filtration on QH*(G/B)
that is naturally estended from the S-filtration, then we have J = F_q, 41 Fur-
thermore it is obvious that A, J are q-deformations of A = n*(H*(G/P)) and
J = 0 respectively. Note that 7 (o) = o¥ for any v € WF. VA Ap 15 a natural
generalization of 7.

Recall that in Definition 2.8, we have given the gradings for all gyw’s. Clearly,
S is contained in Z" x Z>p as a sub-semigroup. Combining Lemma 4.1 and
(part of) the proof of Lemma 2.12, we conclude that S is naturally extended
to the whole Z" x Z>¢ with negative powers of {¢i,---,¢.} allowed. That is,
7" x Zso = {gr(gno®) | o™ € QH*(G/B)[q; ", , ¢ *]}. Therefore we obtain
a natural Z" x Zso-filtration on QH* (G/B)[g;*,--- ,q '], making it a Z" x Z>o-
filtered algebra, due to Theorem 1.2. By abuse of notations, we also denote this
filtration as F. Consequently, we obtain a natural embedding of graded algebras
Gr7 (QH*(G/B)) — Gr* (QH*(G/B)[¢; ", -+ ,¢-']). For simplicity, we assume
Ap is of A-type. Then for each 1 < k < 7, we note W (t}) = Hle qi. By defining

ty e \I/k(tz_l) * Hle q; ", we can extend the algebra isomorphism ¥y, to a larger
algebra isomorphism

QH*(PM)[t; '] = P Grle, (QH(G/B)ay -+ a1,
jez
which we also simply denote as W;. Thus the next theorem follows as a direct
consequence of Theorem 1.2 and Theorem 1.4.

Theorem 1.6. QH*(G/B)[q; ", -+ ,q. '] has a Z" x Zsq-filtration F. If Ap is of
A-type, then combining Uy,’s gives an isomorphism of Z" x Z>¢-graded algebras,
T
v (QQH (Pt ) QQH"(G/P) — GrP (QH™(G/B)lai '+ a4, 1)
k=1

That 15, U =Wy -*\I/.,-_H : (®Z:1 fk) ®q,\PO‘U — (szl \I/k(fk))*\l/.,-_,_l(qAPO‘U).
(Note we have an isomorphism H*(PY)®---@ H*(P")@ H*(G/P) = Gr” (H*(G/B))
of graded algebras, coming from the Leray spectral sequence.)

5. CONCLUSIONS

All the theorems in the induction can be easily generalized to all cases by drop-
ping our assumption that Ap is connected. We give a brief description as follows.

Write Ap = ||/~ A such that Dyn(A,) is a connected component of
Dyn(Ap) for each k. Then the Weyl subgroup Wp also splits into direct prod-
uct of Wy’s which are the corresponding Weyl subgroups of Ay’s.  That is,
Wp = Wi x -+ X Wp,. Among these A(k) ’s, there is at most one which is not
of A-type. If such a subbase exists, then we just assume it to be the last one,
saying A(,). For each k, we denote r, = [A|. Set M = >}" | rj, and then take
the standard basis {e1 1, - , €1, " s€m1, " »€mrp>€mt1,1) Of ZM+1
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For each k, we fix the canonical order (A, Tx) as described in section 2.4.
Then we obtain a grading map gra,, : W x Q" — @”“‘H Zey, ;, using Definition
2.8 with respect to (A, Tx). In particular for any 2 € Wy or 2 = gov with
a € Ay, we have gra,, () € @}%, Zey,; — ZM*! which we treat as an element
of ZM+1 naturally.

Definition 5.1. We define a grading map gr : W x Q¥ — ZM*1 associated to
(Ap,Y) as follows, where T = [, Tk.
(1) Write w = Uppg10m - - 01 (uniquely), in which (vi,- -, Upm, Umi1) € Wp X
X Wi x WP Then gr(w) £ l(vmi1)ems1,1 + Y opey 92 (V8).
(2) For each ap; € Ay, gr(qak = gTA(k)(Qagyi). For a € A\ Ap, we write

m T
Va,ap(Gaviqy) = wpw'qay [ H q V' and then define
k=11i= "
mo Ty
gr(gav) £ (U(wpw') + 2 + ZZQC”” emt1,1 — gr(wpw’) ZZak igr(day ;)
k=11i=1 k=11i=1

(3) In general, © = w HaeA qf;“v, then gr(x) £ gr(w) + ZaeA bagr(gav).

As in section 2.3, we can define a subset, consisting of the gradings of g w’s in
QH*(G/B). This subset also turns out to be a (totally-ordered) sub-semigroup
of ZM*1 and we also simply denote it as S by abuse of notations. In addition,
we obtain a family of subspaces of QH*(G/B) in the same way, which we also
simply denote as F = {Fa}tacs by abuse of notations. Then all the theorems in
the introduction can be easily generalized. For instance, we state part of them in
summary as follows.

Theorem 5.2.

(1) QH*(G/B) has an S-filtered algebra structure with filtration F, which nat-
urally extends to a ZM+1-filtered algebra structure on QH*(G/B).
(2) There is a canonical algebra isomorphism

QH*(G/B)/T = QH*(P/B)

for an ideal T (which is explicitly defined) of QH*(G/B).
(3) Assume P/B is isomorphic to product of Fly ., ’s (i.e. Ayy’s are of A-type).
(a) There exists a subalgebra A of QH*(G/B) together with an ideal J of
A, such that QH*(G/P) is canonically isomorphic to A/ J as algebras.
(b) As graded algebras, (after localization) Gr* (QH*(G/B)) is isomorphic
to (@[, @, QH" (P*)) @ QH"(G/P)

We would like to point out again that our assumption “ all A,y's are of A-type” is
already general enough. This situation has covered all G/P’s for G being of A-type
or Ga-type, and more than half of G/P’s for each remaining type. Unfortunately,
Theorem 5.2 (3.b) is not true in a more general case when A, is not of A-type.
In fact in this case, QH*(G/P) is only canonically isomorphic to a proper subspace
of GT(M+1)(QH*(G/B)) = D50 Fierr1/ Ub<iey Fb as vector spaces. However,
we could still expect

Conjecture 5.3. There exists a canonical algebra isomorphism between QH*(G/P)
and a subalgebra of GT@H)(QH*(G/B)).
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As a direct consequence of Conjecture 5.3, we can conclude Theorem 5.2 (3.a)
always holds for any G/P. Part of the points of the proof for this is to show (i)
and (ii) in the proof of Theorem 1.4. That is, we need to show the behavior of
Ya.ap(@ry)’s do be like polynomials. Indeed, when A is of C-type, (i) and (ii)
become trivial. (Precisely, we use the notations in case C1) in Table 2 and assume
Ap to be of C-type. Then for any Ap = ijl biB; +Qp € QV/Q}, we conclude

Vaap(@rp) = g - Lwith Ap = 377 b8+, >- ), B, by direct calculations.)
In this case, we could still prove Conjecture 5.3 together with some other arguments.
On the other hand, it is shown in [18] that after taking torus-equivariant extension
and localization, Theorem 5.2 (3.a) is true in terms of the localization of equivariant
homology of a based loop group. Hence, we believe that Theorem 5.2 (3.a) also
holds without taking equivariant extension and localization. Both of these provide
evidence for our conjecture.
In addition, we would like to ask the following.

Question 5.4. What is the difference between QH*(G/P) and Gr(}J—MH) (QH*(G/B))?

The ring structure of Gr(fMﬂ)(QH*(G/B))7 or equivalently A/J which is de-
fined in the same form as in Theorem 1.5, seems close to the ring structure of
QH*(G/B). Especially, there might be one way to obtain a nice presentation of
GT@H)(QH*(G/B)) from the presentation of QH*(G/B) [16]. Suppose there
were such a way and we knew the answer to Question 5.4, then we would have a
better understanding on QH*(G/P).

6. APPENDIX

In this section, we show the Key Lemma also holds for all the roots that satisfy
condition (ii) in the proof (of the Key Lemma in section 3.5) whenever A is of
Fy-type or E-type. Since all the arguments are similar, we just list all such roots
as well as the corresponding methods for them. One can see [19] for more details.

When A is of Fy-type, case C9) or C10) will occur. For instance for C9), v
must be either of the form )., ., 8 or equal to one of the following five coroots:
BY + 265 + B3, B + 265 + B3 + B, B + 285 + 265 + i, B +3B5 + 265 +
BY.28Y + 385 + 28y + B, by noting £(s,) = (2p,7") — 1. Then we have

Table for case C9) Table for case C10)
Coroots |r:2| r=3 || Coroots |r:2|r:3|
By + B3 done (y € Rp) By + B4 (M3) | (M2)
By + B¢ (M3) BY + 85 + 83 (M1) | done
BY + By + By (M3) | done |[ By +8y + By + B/ | (ML) ][ done
By + B8y + B/ (M1) By +285 + By (M3) | (M2)
BY + 85 +8y +B8) | (ML) | done || BY + 08y +2By + B/ | (M2) [ done
BY +28y +2B5 + By (M2) BY +28y +3835 + By (M2)
26Y +30 +2By + By | (M1) | done || BY +2B5 + 355 + 28/ (M1)
We would like to make some comments for the tables in this section.
(1) By “done”, we mean that there exists a; € {aq,---,a,-1} such that

(aj,7Y) > 0. Thus it is done by the arguments for condition (i) in the
proof of the Key Lemma. By “done (y€ Rp)”, we mean v € Rp and thus it
is done by the arguments at the beginning of the proof of the Key Lemma.
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(2) By “(M1)” (resp. “(M3)”), we mean the corresponding method, especially
the use of part a) (resp. b)) of Lemma 3.29.

(3) By “(M2)”, we mean the induction hypothesis is used. In fact, whenever
referring to (M2) in the tables, we can use the same arguments as follows.
For instance, we consider the case when C10) occurs, vV = 35 + 28y + Y
and r = 3. In this case, we can take oj = B3(= a3). Then Y = s,(7Y) =
By + By + B and consequently (A1, A2, A3, A1) = gr(gsv) = (—1,1,—2,8).
Furthermore, we have (a1, az2,as3,a4) = (0,a2,a3,0) and (b1, ba, b3, by) =
(0, b2, b3,0) with az + a3 = 1 and by + b3 = —1 by noting (al,aJV> =0. If
p1 < 0, then it is done. If y; = 0, then by the induction hypothesis we have
o < 0. We claim po = 0. Thus pus < 0 and ag + by = as + po + b < 0 (by
considering gr). Since as + as + by + bs = 0, if as + by < 0 then it is done;
otherwise, we have ag + bs = —(ag + ba) = 0 so that as + bs + pus = pus < 0.
Thus it is done. It remains to show our claim. Indeed, we note that
po +ih = ko + Ao = ko + 1. Since l(usjsg) < (usj), us;(8) € —R™.
Then if (o, ") < 0, us;(a) € —R" implies us;sg(a) € —R*. Hence
# = t{a € Bj, \ Rp, | us;(a) € —R*} = t{a € Bp, \ Rp, | us;(a)
_RJra <O‘56V> < 0}+ﬂ{a € RFQ\RH | USj(Oé) € _RJra <O‘56V> > O} < ﬂ{a €
RJI%\RP1 | us;sg(a) € —RT}+t{a € RJI%\RP1 [ (o, 8Y) > 0} = ko +#{B2}.
Thus pus = ko + 1 —i%, > 0 and consequently we have po = 0.

Now we assume A is of E-type. Denote = := {; | (8;,7") > 0}. Recall that we
should replace K = o+ r with Kk = 0 + ¢(= 0+ r — 1) in Table 2 when Ap is not
of A-type. Note that any v € R is of length (2p,7") — 1. It suffices to assume
n = 8. It remains to discuss at most the roots in the tables as below.

Table for case C4) with r =6 or r =7

| Roots with = C {51, Ba, Bs} [7=6] r=7 |
b1+ B2 done | done
B2+ Bs + Ba+ Bs + Bs (M3) | done
Bi+ B2+ B3+ Ba+ Bs+ B done | (M3)
Bi+ 2082 + 283+ 2B4 + 285 + Bs + Bs (M1) | done
B3 + 284 + 385 + 286 + Br + 288 done (v € Rp)
B2+ B3 + 2B4 + 385 + 286 + Br + 2Bs (M3) | done

B1+ P2+ Bs+20s+385+ 265+ Br+20s | done | (M3)
B1+ 202 + 283+ 284+ 385 + 206 + B7 +28s | (M2) | done
B1+282+ 383+ 484+ 505 +386 + B7+30s | (M2) | (M3)
Bi+3B2 + 483 + 584 + 685 + 486 + 207 + 308 | (M1) | done

261 + 382 + 483 + 584 + 6085 + 486 + 207 + 385 | done | (M1)

Table for case C5) with r =5

| Roots with 2 C {5, 86} | Method |
Bs + Bs (M3)
B2+ 283 + Ba + 285 + Bs (M3)
B2 + 263 + B4 + 285 + 286 + P7 (M1)
B1+ 282 + 383 + Ba + 365 + 286 + Br (M3)
B1+ 202 + 383 + B4+ 385 + 3P + 287 + By (M1)
Bi+2B>+48s+ 28, +485 +3B6 + 267+ Bs | (M2)
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201+ 4P2 + 6083 + 304+ 505+ 306 + 287 + Bs | (M2)
201 + 402 + 683 + 384+ 505 + 406 + 267 + Bs | (M1)

Table for case C7) with 0 <o <3

Roots with { TE% }gi:gﬁ:g‘i’}f;’ﬁg} Constraint | Method
1) B3 4 Ba + Bs + b7 0=3
2) B2+ B3 + B4 + Bs + Br 0=2 (M3)
3) B1 4 Ba+ B3 + Ba + B5 + Br o=1
4) B2 + 203 + 284 +2B5 + Bs + Br 0=3 (M1)
5) B1 4282 + 285 + 284 + 285 + B + b7 0=2
6) B7 + Bs 0>0 (M2,2,3,3)
7) B3+ B4+ Bs + Br + Bs 0=3
8) B2+ B3+ Ba+ Bs + B7 + Bs 0=2
9) B+ B2+ Bs+ Ba+ Bs + Br+ Bs o=1 (M1)
10) B2 +2B3 + 284 + 265 + Bs + Br + Bs 0=3
11) | B1+2B2+2B3+ 284+ 205 + fs + Br + Bs 0=2
12) Ba + 205 + Bs + 287 + Bs 0>0 (M2,2,3,3)
13) Bs + Bs + 285 + Bs + 2B7 + Bs 0=3 (M3)
14) B2+ B3+ Ba+ 2065 + Bs + 267 + fs 0=2
15) | Pi+Pa+Ps+Ba+t 285+ P+ 267 + Bs o=1 (M2)
16) B2 + 203 + 284 + 25 + Bs + 207 + Bs 0=
17) | B14+2P2+ 205 + 284 + 2085 + s + 207 + s 0=2
18) | B1+2B2 +3B3+3B4+3B5 + P + 287 + Bs 0=3 (M1)
19) B2+ 283 + 384 + 485 + 286 + 387 + s 0>0
20) | Si+ B2+ 283+ 384+ 485+ 206 + 307 + s o=1 (M2)
21) | Bi1 42824203+ 304+ 485 + 2086 + 357 + Bs 0=2
22) | B1+2B>+ 303+ 384+ 485 + 266 + 3687 + Bs 0=3
23) B2 4283 + 384 + 485 + 286 + 387 + 25 0>0
24) | P14 P2+ 2083+ 384+ 485 + 256 + 357 + 205 o=1 (M1)
25) | B1 + 2B + 2Bz + 384 + 4B5 + 2B + 387 + 20 0=2
26) | B1 + 2B + 3Bz + 384 + 4B5 + 2B + 387 + 20 0=3
27) | P1+ 282+ 3B3 + 484+ 585 + 206 + 487 + 23 0>0 (M3,2,2,2)
28) | B1 + 2B + 48B3 + 584 + 685 + 3B + 487 + 28 0=3
29) | B1+ 382+ 483+ 504+ 685 + 385 + 487 + 288 0=2 (ML)
30) | 261 + 302 + 403 + 584 + 635 + 356 + 407 + 25 o=1

In the above table, by “(M2,2,3,3)” for the root 87 + s, we mean (M2) (resp.
(M2), (M3) and (M3)) is used when o = 0 (resp. 1, 2 and 3). Similar notations are
used for the case no. 12) and no. 27).
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