TOWARD QUANTUM PIERI RULE FOR FY, VIA SEIDEL
REPRESENTATION

CHANGZHENG LI AND JIAYU SONG

ABSTRACT. By using a “quantum-to-classical” reduction formula on the Gromov-Witten invari-
ants of flag vaireities F'¢,,, we provide a new proof of the Seidel operator on the quantum coho-
mology ring QH*(F¢y). Further, we reprove a quantum Pieri rule with respect to certain special
Schubert class for QH™*(F¢y). Finally, we propose a concrete conjecture on the corresponding
quantum Pieri rule for the quantum K-theory of Fé,.

1. INTRODUCTION

The (big/small) quantum cohomology QH*(X) of the complex projective manifold X is a defor-
mation of its classical cohomology ring H*(X). Gromov-Witten invariants of genus 0 are used to
define the quantum product of QH*(X), which virtually compute the number of rational curves (or
pseudo-holomorphic curves, from the perspective of symplectic geometry) that satisfy appropriate
conditions. The study of QH*(X) has been a very popular research field since the notion of quantum
cohomology is introduced.

Classical cohomology H*(+) is a contravariant functor. Morphisms between topological spaces
f + X — Y naturally induce the ring homorphism f* : H*(X) — H*(Y). However, quantum
cohomology is different from classical cohomology, with the lackness of functoriality in general
case. Therefore, geometric objects have to be studied individually in general. This is one of the
important reasons that make the study of quantum cohomology extremely difficult. For some cases,
we can still discuss functoriality of quantum cohomology appropriately. For example, there is a
famous crepant resolution conjecture: for K-equivalent smooth projective varieties (or orbifolds,
Deligne-Mumford stacks) Y, ,Y_, (that is, there exist birational morphism fi : X — Yi such
that f¥ Ky, = f*Ky_,) the corresponding quantum cohomologies QH*(Y_), QH*(Y,) should be
related through the analytic continuation of quantum parameters. This conjecture was first proposed
by Yongbin Ruan [36], and further developed by Bryan-Graber, Coates-Iritani-Tseng, Iritani and
Ruan [5,15,16,22]. The conjecture is a widespread concerning question, for which there are many
progress, such as [12,14, 19, 26].

For the natural projection map between (partial) flag varieties, we can also talk about the functo-
riality of quantum cohomology appropriately. Flag varieties G/P are a class of projective manifolds
with very nice properties, where G is a connected complex semisimple Lie group and P is a parabolic
subgroup of G. The classical cohomology H*(G/P) has a natural Z-graded algebraic structure. Tak-
ing the Borel subgroup B C P of G, we have a natural projection map 7 : G/B — G/ P from the com-
plete flag variety G/B to the partial flag variety G/P. From the Leray-Serre spectral sequence, there
is a Z2-graded algebra isomorphism H*(G/B) = H*(G/P) ® H*(P/B). Further, we take the para-
bolic subgroup P’ that satisfies B C P’ C P and obtain the corresponding fiber bundle P/B — P/P’
as well as a Z2-graded algebraic structure on H*(P/B). Combining them with the graded structure
induced by G/B — G /P, we establish a Z3-graded algebraic structure on H*(G/B). In this way, we
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at most obtain a Z"t!-graded algebraic structure on H*(G/B), where r is the semi-simple rank of
the Levi subgroup of P. And the induced morphism 7* : H*(G/P) — H*(G/B) is an injective ho-
momorphism, which can be regarded as part of the isomorphism of this graded algebra (in the form
of {a®1®"} ,em+(a/p) )- In [28,31] , Leung and the first named author used the Peterson-Woodward
comparison formula [34,39] to define a Z"+!-graded vector space structure on QH*(G/B), and fur-
ther proved that QH*(G/B) is a Z"+! filtered algebra under this graded structure. Moreover, its
induced Z"*!-graded algebra (after localization) is isomorphic to the tensor product of QH*(G/P)
and r quantum cohomologies of the form QH*(P’/P"). In this way, a quantum version of the
Leray-Serre spectral sequence is given. This graded algebra has very nice applications, especially
on the "quantum — classical” reduction principle. That is, 3-pointed genus zero Gromov-Witten
invariants of G/P with high degree can be reduced to the classical intersection number G/B under
certain conditions. In this “quantum — classical” principle, we further obtained the applications on
quantum Pieri rules [20,30] , which extended the quantum Pieri rule of Ciocan-Fontanine [13] and
the related work of Buch, Kresch and Tamvakis [8,9,13,24,25].

The (quantum) cohomology of the flag varieties SL(n,C)/P has a canonical additive basis of
Schubert classes o%. In the quantum product of Schubert classes,

u vo_ w,A\p w
o' %o’ = E Ny anpo,

Ap,w

the Schubert structure constant N;‘f;f‘” is a genus 0, 3-pointed Gromov-Witten invariant of G/ P with
an enumerative meaning. In particular, it is a non-negative integer. When P is a maximal parabolic
subgroup, SL(n,C)/P = Gr(k,n) = {V < C" | dimV = k} is called a complex Grassmannian.
The corresponding Schubert class can be labeled by a partition. ¢“ = ¢* , where the partition
o= (1, k) = (u(k) — k- u(2) — 2,u(l) — 1) € ZF satisfies n — k > puy > -+ > g > 0.
We usually abbreviate the special partitions p = (p,0,---,0) , 1™ = (1,---,1,0,---0) ( m copies
of 1). These two special partitions are equivalent in the sense of Gr(k,n) = Gr(n — k,n). The
multiplication formula o o is called the quantum Pieri rule, which was first given by Bertram [3].
The Seidel operator [37] o!"x generates a cyclic group Z/nZ action on QH*(Gr(k,n)) [2,35], and
then Belkale provided a new proof of the quantum Pieri rule using this group action. This approach
is also directly generalized to the quantum K-theory for Grassmannians [6,32]. For the quantum
cohomology of flag varieties G/ P of general Lie-type, the corresponding Seidel operator was studied
in [11]. In this paper, we will follow this idea to re-study the quantum Pieri rule of the quantum
cohomology QH*(F¥,) of the complete flag variety F¢,, = SL(n,C)/B. That is, we hope to show

Quantum Pieri rule = classical Pieri rule + Seidel operator action.

To be more precise, we consider the Schubert class o®1%27 -1 of H*(F4,), which is the image of
the special Schbuert class o1 in H*(Gr(n — 1,n)) of the natural monomorphism H*(Gr(n —
1,n)) — H*(F4,). Here s; = (4,7 + 1) is a transposition of the permutation group S,,. We use the
”quantum — classical” reduction principle to give a precise characterization of quantum product
with a Seidel operator T of QH*(F¢,) in Theorem 3.1, where T is defined by

T (%) :=g1527 %=1 % g*,

Combining it with the classical Pieri rule [38], we re-prove the quantum Pieri rule with respect to the
aforementioned special Schubert class in Theorem 3.2. We will define u 1 ¢ := (s189- - - sn_l)iu and
A(u), A(u, 7) in Section 3.1. Using these notations, Theorem 3.1 and Theorem 3.2 can be combined
and described as follows.
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Theorem 1.1. Let 1 <m <n—1andu € S,, Note k:=n —u(n). In QH*(F¥,,), we have
(1) T(0") = gruyo™™

(2) gSn—m T Sno28n_1 4 U _ q1—1q2—2 .. q}]{:”{’qA(u7k)Tn7k(O—Snfm"'Sn725n71 U UuTk).

It is our main motivation to the study of quantum Pieri rule at the quantum K-theoretical
level, by interpreting the quantum Pieri rule of QH*(F?¢,,) in the above way. In section 3.3, we
propose Conjecture 3.1. That is, we should be able to obtain the quantum K-theoretical one,
by simply replacing the Schubert cohomology class “c” in Theorem 1.1 with the Schubert class
“O” in the K-theory K(F/,). Namely the study of the corresponding quantum Pieri rule for the
quantum K-theory QK (F'¢,,) should be reduced to the Pieri rule for the K-theory K (F¢,,) obtained
by Lenart-Sottile [27]. This could help us to understand the general quantum Pieri rule [33] on
QK (Fl,). Moreover, the quantum K-theory of the flag varieties SL(n,C)/P admits functoriality
induced by the natural projection map between flag varieties [7,23]. With the help of the induced
surjective algebra homomorphism, we can understand the quantum Pieri rule of special Schubert
class index by s;5,41---s; with general Schubert class in quantum K-theory of non-complete flag
varieties SL(n,C)/P(P # B). We provide Example 3.4 for F'¢s and a Pieri-type product of for the
quantum K-theory of Gr(3,6) induced by Conjecture 3.1, which is consistent with the quantum
Pieri rule [10] obtained by Buch-Mihalcea. This provides an evidence for our Conjecture 3.1.

Acknowledgement. The authors are supported in part by the National Key Research and Devel-
opment Program of China No. 2023YFA100980001 and NSFC 12271529.

2. FUNCTORIALITY OF QUANTUM COHOMOLOGY OF FLAG VARIETIES

In this section, we briefly review the functoriality of quantum cohomology of flag varities in the
series of work [28,29,31] and its application on the reduction of “quantum — classical”. On the
one hand, our statement will only focus on flag varieties of type A, _1, which is very concrete. On
the other hand, in this section we will use the standard notation in Lie theory to indicate that the
corresponding results hold true for all Lie types.

2.1. Notations. We introduce commonly used notations in Lie theory. For more details, please refer

o [21]. Consider complex simple Lie group G = SL(n,C). Let B be the standard Borel subgroup
of G, consisting of upper-triangular matrices, and P be a parabolic subgroup of G containing B.
Denote by b the Lie algebra of the Lie subgroup 7' that consists of the diagonal matrices of G.
Let A = {ay,a2, - ,anp—1} C h* be the standard simple roots, and {ay, o, - ,ay/_1} C b be
the simple coroots. Denote by (-,-) : h* x h — C the natural pairing. Let Q¥ = &% ,Za; and
p =Y, Xi €b* where y; are the fundamental weights satisfying <Xi,0¢}/> = 0;,;. The Weyl
group W of G is generated by the simple reflection {s; ;= s,, | 1 <i <n — 1} and is isomorphic
to the permutation group S,. Here the simple reflection s; : b* — bh*;5;,(8) = 8 — (8,0 )a;
corresponds to transposition (i,7 + 1) in S,,. We freely interchange s; and (i,7 + 1) whenever there
is no confusion. There is a standard length function (with respect to the generators {s;};) on the
Weyl group, denoted as ¢ : W — Z>q. The parabolic subgroup P D B corresponds to a unique
subset Ap = A\ {ap,, - ,an, } of A, where 1 <nj <--- <mnp <n-—1

1) Ag =10. Let P,, be the parabolic subgroup corresponding to the subset {a;}, then
P, = {(gap) € SL(n,C) | gap =0, if a > b and (a,b) # (i + 1,4)}.

2) r:=|Ap]| is the semisimple rank of the Levi subgroup of P.

3) The root system R can be obtained from the action of the Weyl group on the set A of simple
roots: R=W-A =Rt U(-R"), where Rt = RN®"'Z>qq; is the set of positive roots
respect to A. Denote Rp := RN @aeapZsoa, Q) = BacapZa’.
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4) Let Wp be the Weyl subgroup generated by {s.|a € Ap}, Then WF := {w € W{(w) <
l(v),Yv € wWp} C W is the set of minimum length representatives of W/Wp. Denote
ng := 0,ngy1 :=n. As a subset of S, we have

WF={wesS, |wni_1+1)<whn;_1+2)<-<wn), Y1<i<k+1}.

5) There is a unique longest element in W (resp. Wp), denoted as wg (resp. wp). As a
permutation of S, wo(j) =n+1—7,V1<j<n.

6) W = N(T)/T, here N(T) < G is the normalizer of T in G. For uw € W, we denote by
@ € N(T) a representative of the corresponding coset set in N(T')/T under this standard
isomorphism.

2.2. Quantum cohomology. The content of this section mainly follows from [17,18]. Flag varieties
G /P parameterize partial flags of specific type in C": G/P = {V,,, <--- <V, <C" |dimV,, =
n;,V j} =t Fly, ... nyn In particular, G/B = Fl1 5. 1., =: F¥, is a complete flag variety. The
(opposite) Schubert varieties X,,, X" in G/P are respectively defined by

X, = BuP/P, X" = woBuouP/P.

Thus the complex dimension of X, (resp. codimension of X*) is £(u). The Schubert (co)homology
classes oy = [Xu] € Houu)(G/P,Z) and o := P.D.[X"] € H*"(G/P,Z) respectively form an
additive bases [4] of the (co)homology of the flag varieties X = G/P:

H,(G/P,Z)= € Zou,H(G/P,Z)= P Zo}p.
ueWw?r uew?r

Note that the natural projection map = : G/B — G/P induces a monomorphism
™ H*(G/P,Z) — H*(G/B,Z);7"(cp) = 0.

Therefore we abbreviate o%, 0% as . Besides, we have the canoincal isomorphism Hy(G/P,Z) =
B, can, Zos, = QY /QY of abelian groups.

Given A\p € Hy(G/P,Z) = Q" /Q}, we denote by Mo 3(G/P,Ap) = {(f : P! = G/P;p1,p2,p3) |
f«([PY]) = Ap, f is a stable map} the moduli space of 3-pointed, genus-zero stable maps of degree
Ap. This moduli space is an orbifold, and its dimension is equal to dim G/P + (¢1(G/P), Ap). Let
ev; : Mo3(G/P,Ap) — G/P be the i-th evaluation map. For an, € A — Ap, we introduce the

formal variable g,,;. For Ap = 37, A A, bjoy. + Qp, we denote qx, =[], ca_a, q%, The

(small) quantum cohomology QH*(G/P) = (H*(G/P) ® Clgn,, " »an,],*) of theJﬂag variety G/P
is defined by

Uu*(fvz E Nw >\Pq/\p
ApEHL(G/P,Z),weW?FP

Here the quantum Schubert structure constant Nﬁf;})“’ is a genus-0, 3-pointed Gromov-Witten in-
variant of degree Ap on G/P, given by the following integral

NP = / evt(0™) U evl(o¥) U evi(o™),
Mo,3(G/P,Ap)
where wV := wowwp € WF. Geometrically, for ¢, ¢’ € G in general position, we have
(8) Ny =#{f:B' = G/P | fu([BY) = Ap, f(0) € X", (1) € gX", f(00) € ¢ X"} € Lo,

By the definition of the moduli space and its dimension formula, we have

4) N;‘f;j\f’ =0 unless ¢(u) + £(v) = L(w) + (c1(G/P),A\p) and A\p > 0.



TOWARD QUANTUM PIERI RULE FOR FY¢, VIA SEIDEL REPRESENTATION 5

Here A\p > 0 means b; >0,V 1< j <k. Since ¢;(G/P) > 0, the right side of the quantum product
is a finite sum. Therefore,

1) QH*(G/P) = @ Cqyr,0" is a Z-graded algebra, where the Z-graded structure is naturally
given by the degree of the basis {gr,0™} :

degqr,0” = l(w) + (c1(G/P), Ap).
In particular for G/B, we have (c1(G/B),\) = (2p, \), where A € Hy(G/B,Z) = Q".

2) c" U ¥ = 0" x 0"|g=0. That is, the quantum cohomology QH*(G/P) is a deformation of
the classical cohomology H*(G/P).

2.3. Functoriality of quantum cohomology. In this section, we briefly explain the Z2-graded
algebra structure on QH*(G/B) introduced by [28,29,31] for the special case of natural projection
map 7 : G/B — G/P, (o € A) (note that » = 1). This structure can be regarded as an induced
“morphism” at the quantum cohomology level from 7, so we roughly call it “functoriality”.

Note that when o = «;, the projection map 7 is the natural forgetful map F¢, = G/B —
G/Ps, = Fl12... i—1,i+1,. n—1m, Which is a fiber bundle with fiber P,,/B = P!. As vector spaces,
QH*(G/B) = H*(G/B) ® Clq1, -+ ,qn—1]. We consider the basis {grxd®“|(w, ) € W x QV} of the
localization QH*(G/B)[q; ', a5 ", -+ , ¢, 4] of QH*(G/B), and introduce a map sgn,, with respect
to a given simple root a € A:

1, l(w) — l(wsy) >0,
0, {(w) — (wsy) < 0.

Note that £(w) — ¢(ws,) = +1 , and £(w) — £(ws,) = 1 holds if and only if u := ws, € W', Then
we can define a Z2?-grading map with respect to a as follows:

gra : W x QY — 7%
gra(gro™) = (sgng (w) + (a, A), L(w) + (2p, A) — sgn, (w) — (o, A)).

oW —{0,1};  sgn,(w) = {

We notice
a) (o € QH*(G/B) (resp. QH*(G/B)[g;’"]) if and only if gx € Clg1, - ,qn_1] (resp.
Clgr,-- - an-1llg; '))-
b) Denote gr,(grc®) = (a,b), then we have deg(gro®) = a + b. Therefore gr,, is actually a
Z2-graded refinement of the Z-graded structure of QH*(G/B) in Section 2.2.
We use the lexicographical order on Z2. That is, a = (ay,a2) < b = (b1, by) if and only if either
a1 < by or (a3 = by and as < by) holds. Then we define

Far= @ Cao"cQH'(G/B), F:= @ Cao™ c QH(G/B)lq,)).

gra(grov)<a gra(gro®)<a

As a consequence, we obtain a family F = {F, }acz2 of vector subspaces of QH*(G/B) , and a family
F' of vector subspaces of localization QH*(G/B)[q,] of QH*(G/B) (where F' can be regarded as
the natural extension of F). Their associated Z2-graded vector spaces are

PP (QHY(G/B)) = P Grl.  GrT(QH"(G/B)g;}]) = P Grl

a€Z? a€Z?

respectively, where Gr? := F,/ Uycq Fy, and Gr] := F./ Up<a F},. The definition of the map
gre is inspired by the following Peterson-Woodward comparison formula, which is proposed by
Peterson in his unpublished work [34], and proved by Woodward [39] later. This formula reduces
the computation of the Gromov-Witten invariant N,/ “”)‘P of any (partial) flag variety G/P to the

! A
computation of the corresponding Gromov-Witten invariant N;U o TP of the complete flag variety
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G/B. In general, the corresponding Z"!-graded map is more complicated, for which we refer to [28]
for the details.

Proposition 2.1 (Peterson-Woodward comparision formula). (1) Let Ap € QV/Q}, then there is
a unique A\p € QV such that A\p = A + Q% and for all v € R} , (7, Ap) € {0,—1}.
(2) For any u,v,w € WP, we have

wwpwP/ ,)\B

w,Ap __
Nuﬁ, = Nuw

)

where P’ is the parabolic subgroup corresponding to the subset Apr = {5 € Ap|(8,Ag) = 0}.

According to the Peterson-Woodward comparison formula, we get an injection map between
complex vector spaces:

Yo : QH"(G/Po) — QH"(G/B),

w wwpw
Dp, 0 > qrgo TP

Proposition 2.2 ( Theorem 1.2 of [28]). QH*(G/B) is a Z>-filtered algebra with respect to F. That
s, we have

FoxF, C Foqy,
for any a,b € Z2.
Denote Gri, (QH*(G/B)) := Z-?ZG%O) and Gr{, (QH*(G/B)) := ]%BZGT(]:OJ)' By replacing
F with F', we define this similarly for QH*(G/B)[q,+]. Furthermore, we consider the standard

isomorphism QH*(P') = % , where t labels the quantum variable of QH*(P!). As a core

consequence of Proposition 2.2 , we have

Corollary 2.1 (Theorem 1.4 of [28] ). The following maps VS, and 2. are well-defined, and
they are algebra isomorphisms. *
\I]a

ver QH*(P') — Grio,(QH*(G/B)); T Sa, GV
Ui+ QH*(G/Pa) — Gr{ o (QH*(G/B));  arp, 0% = Yalarp, o) -

Here 5, € Gr(};)o) C Gri.(QH*(G/B)) dentoes the graded component of o + Up<(1,0)Fp. After
a natural extension , we have the following Z2-graded algebra isomorphism:

Ve, © Ui, s QH (BN ® QH™(G/Pa) — Gr” (QH*(G/B)|q,0))-

Remark 2.1. The proofs of Proposition 2.2 and Corollary 2.1 are mainly based on the non-negativity
of the structure constant N]jj;j\P, the Peterson-Woodward comparison formula and the following
quantum Chevalley formula (for general G/ P, see [18]), and the induction on {(u).

Proposition 2.3. Letue W and 1 <i<n-—1. In QH*(G/B), we have
R A I S P A VAT S
the first sum over positive roots v € RT that satisfy £(us,) = £(u) + 1, and the second sum over

positive Toots v € R that satisfy ((usy) = l(u) + 1 — (2p,7").

n terms of notations of [28], U<, = ¥; and U= Vs
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2.4. “Quantum — Classical” reduction. Corollary 2.1 can give applications of Gromov-Witten
invariants in the “quantum — classical” reduction. We illustrate the main idea with a simple
example.

Example 2.1. Consider G = SL(3,C), a = ay. That is, G/B = Fl3, G/P, = Gr(1,3) = P
Then we have

Ct®op* 1(Cq op®?)

(GRR

vcr & \Ilhor)

ver ® \Ijhor)
\Ijger ® \Ijhor) (@) (\Ij\oléer ® \Ilhor) (053251)
2@ o) x (2@ 03)

= (z4pr ) Q@ (0F *p oF)

A/_\,_\A

=t® Dop™.
. \
Therefore, we have C = D. Note that C = Nz 5’5, is the Gromov-Witten invariant of degree
oY in QH*(G/B). D = N30 is an intersection number in the classical cohomology H*(G/P.,),

which can also be regarded as a classical intersection number in H*(G/B). Therefore we obtain
“quantum to classical” reduction:
Vv
Nagsligs, = Nazi2®.
From the definition of the graded mapping gr., we 1m1nediately obtain:
Lemma 2.1. Let u,v,w € W and X\ € QV. Then we have gry(c™) 4+ gra(c¥) = gra(gra®) if and
only if the following two conditions both hold true:

(1) lw)+(2p,A) = L(u) +£(v),  (2) sgn,(w)+ (a,A) = sgn,(u) +sgn, (v).
Therefore, based on the idea of Example 2.1 and the above lemma, using Corollary 2.1, we can
obtain the following reduction.

Proposition 2.4 (Theorem 1.1 of [29]). For any u,v,w € W and any X € QV, we have
a) N¥:* =0 unless sgn,(w)+ (a, \) < sgn, (u) +sgn, (v) for all « € A.
)

u,v

b) If sgna(w) + {a, \) = sgn, (u) + sgn, (v) =2 holds for some o € A, then

N2z, sang (w) =0,

w,A\ wA—a _ U,VSa ’
]\/vu,7 Nusa VS ws
N} Uga , sgn,(w) =1.

Corollary 2.2. Ifu,v,w € W and o € A satisfy sgn,, (v) = sgn,(w) =1 and sgn,(u) = 0, then

w,0 __ WSy ,0
Nu;; - Nu,vs; .

Proof. Let 4 = v, = US4, W = WS, , From the proposition sgn,, (w) = 0 and sgn,, (w) + {a,aV) =
sgn, (@) + sgn, () = 2, Therefore from Proposition 2.4,

NPsa 0 = Nwsa0 = NTo el _ ybsaa’—a’ _ nuwo _ yu,
: :

U, VS USq VS U, VS

O
Example 2.2. Consider G/B = Fly. Take u = $3525152, v = $28152, W = $15253 and A = o +ay .

\2 Vv \2 Vv
Nw,)\ _ N'WSS,A*FQS _ Nslsz,al +a, fag
- u,vs3 - §38285152,52515283>

\ 4 4 %
N:LD,,U)\ — NSL™ +ta; fag NE183,04 +ay _ NS1838270¢1 — Ns1s382,0 — 1
,

$38281,52518283 T §358251,525182 535281,5251 5382,82
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We call u € S, a Grassmannian type permutation if there exists k such that u(1) < u(2) <
<o <u(k) and u(k +1) <u(k+2) <--- <wu(n), As an application of the “quantum — classical”
reduction, we have

Proposition 2.5 (Theorem 1.2 of [29]). Let u,v,w € S, and X\ € QV, If u is Grassmannian type
permutation, then there is v/, w’ € S,, such that in QH*(F{,),

’
WA w”,0
Nu,v - Nu,v’ .

In the next section, we will discuss the special Grassmannian type permutation v = 182 - S, _1
in detail.

3. FROM SEIDEL REPRESENTATION TO QUANTUM PIERI RULE

In this section, we discuss how to use Seidel representation in QH*(F'¢,,) to obtain the quantum
Pieri rule of the form g®i®i+175n—1 x g% and propose expectations at quantum K-theory level.

3.1. Seidel operator and quantum Pieri rule. In S,,, s1s2---s,—1 = (1,2,--- ,n) is an n-
cyle. So (s189--8,—1) & Z/nZ is a cyclic group of order n. Denote ugm) = Sm—j4l" " Sm—15m

(0<j<m)and u(()m) :=1id. For any u € S,,, we have the following properties (see Corollary 2.6
in [28] ):

(n—1) (2)
i cee U i U

()
1 —1 J 1

(1) There exists a unique (jp—1, - ,J2,j1) such that u = u ;

sion of w.

(2) u(n) =nif and only if j,_1 = 0. We denote A(u) :=0¢€ Q".

(3) Denote jo := 0. If u(n) # n, then the set {i | j; > 0,7;—1 = 0,1 <i < n — 1} is not empty,
and we denote the maximum value of the set as [. The permutation u has the reduced
expression of form u = vs,_1 - - s;4+15; such that

(a) v= w2 (7D 02 1)
Jn-1—1 Ji—=1 Zji—2 1
(b) £(u) — L(usiSi41 " Sn—1) =N —1;
(c) l(u) — l(us;—181-Sp—1) #n—1+1.
Now we define

is a reduced expres-

- ug = USS|4+1 - - - Sp—1 does not contain the term s,_1;

(5) Au) =a) + @y + -+ a1, and grw) == Qi1 Gn-1-

Lemma 3.1. Let 1 <m <n—1,u€ S,, A€ QV. Then in QH*(F{,), we have N;l:i\m“‘sn—17u £0
only if u(n) # n and there exists 1 <k <n —1 such that \ =) + -+ a,_;.
Theorem 3.1. Let u € S,,. In QH*(F4,), we have

oS82 1t gf u(n) =n;
o ifuln) # .

We will skip the proof of the above lemma and theorem first, the corresponding details for which
will be given in the next section. The above theorem inspires the following definition.

gS152 " Sn—1 4 g — {

Definition 3.1. Foru € S, and k € Z>q, we define

el
I
—

(6) utk:=(s180- - sp_1)"u€Sn,  AMu,k):=Y Autj).
J
The operator T := o127 $n=1x s called a Seidel operator of QH*(F{,,).

Il
=)
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From Theorem 3.1, for any u € S, and k € Z>¢, in QH*(F?,,) we have
Tk(Uu) = qA(u,k)UuTk~
Note that u T k& = u if and only if n|k. Therefore the operator
T : H*(Ft,) — H*(Ft,); T(0") :=T(0")|g=1 = 0"
induced by 7 generates a cyclic group Z/nZ action on H*(F¢,), which is called the Seidel repre-
sentation.

Example 3.1. The permutation u € S, can be represented by a line of its image: v = u(1),--- ,u(n).
For1 <k<n,idtk=k+1k+2,--- ,n,1,2,--- k€S, exactly corresponds to the mazimum
partition (k,k,--- k) associated with the Grassmannian Gr(n — k,n). By induction, A(id, k) —
AMid, k= 1) = A{id 1 (k—=1)) =ay_; + oy o+ -4y _, . Therefore

(7) TR = ¢ 214k 73  qnopyr 0™,

where o'4T% = 7*(P.D.[pt]) is the image of the highest degree Schubert class P.D.[pt] in H*(Gr(n —
k,n)) under the induced homomorphism ©* of the natural projection map w: F¢,, — Gr(n — k,n).

As an application of the Seidel operator, we can obtain the following quantum Pieri rule with
respect to the special Schubert class gn—m""Sn—28n-1,

Theorem 3.2. Let 1 <m <n—1andu € S,. Denote k :=n—u(n). In QH*(F¥,), we have
(8) oSn—m 2801y U q1—1q2—2 . qi:”{’q/\(u’k)Tn_k(O-Sn—”m,"'sn—QSn—l U U“Tk).

Proof. Observe that v(n) = n when v := u 1 k. Based on the definition of the Seidel operator,
equation (7), and the commutativity and the associativity of the quantum product *, we have

Tixxy) =zxT'(y), T"(x) = T"(id) 2 = q1q5 - - - "~ ,
for any z,y € QH*(F{,,) and i € Z>(. Therefore,
Q- @ ) = Tk (gt st T
= TR gy o)
= TR (g U gy o),

the last equality in which is obtained by Lemma 3.1.
|

Example 3.2. In S5, u = $2838451528381 = 43512, Sok =5—u(5) =3 and AN(u 1 0) = A(u) = oy +
ay. We have u 11 = $152835152835451528351 = S3545283518251, so A(uT1) =) + a3 + a + ay;
Ul 2 = 5152535453545253515251 = 548352, $0 AMu12) = a3 +ay +ay ; hence u 1 3 = 51 = 21345,
Ua(w,3) = I\t 4Nt +A(ut2) = (14593G3 - By Theorem 3.2, in QH*(F{5), we have
0528354 4 g% — (]f1q52q§3q24%(u,3)T(0528384 U UuT3))

_ q;17-‘2(0,523354 U 0’51)

_ q4—17-2(0_52535431 +051525354)

— q4—17"(q40,835481528381 +q40,828384815283)

— q3q40_545283$18251 + q3q40835482535152.

Problem 3.1. Forue S,,1<i<j<n—1,in QH*(FY,) , what are the necessary and sufficient
conditions for g®i%i+1% x gt = g%i%it18%i U g¥ (in terms of combinatorial information of u)?



10 CHANGZHENG LI AND JIAYU SONG

3.2. Proof of Theorem 3.1. We start by proving Lemma 3.1,

Proof of Lemma 3.1 . Note that g%»-m""*n-1 appears in the quantum product (o®~-1)™ = gsn-1 x
<% o*=1 (m copies). By the non-negativity of the quantum Schubert structure constant, we have
N;‘:L )‘m sn_1u 7 0 only if gyo" appears in (0°"=1)™ x g%. According to the quantum Chevalley
formula (Proposition 2.3 ), A = ZJ lla]a}’ satisfies (i) ap—1 > 1; (ii) for any 1 < j < n —1,
0 < a; < ap—1, and if a; # 0 then aj+1 # 0. In particular, if a,_; = 1, then there exists
1<l<n-—1suchthat \=a) 4+ -+ a,_;.
Ifa,_1 =2, Wedenotejo := 0 and Jjnyin :—max{j laj_1<2,a4;=2,1<j<n-1}. Ifa;, 1=

0, then \ = Zamm jof +2a 420 g+ 200 Obviously sgng  (w) + (. A) >
sgho,  (Sp—m sn_l) +sgn,, (u). By Proposition 2.4 a), we have Ny, A sy =0. Then we

consider the case aj;,,,—1 = 1. Note that (a;,,,,A) =1 and sgn,  (Sp—m " sn—1) = 0, hence we

obtain sgh,, (w)—l—(ah!‘ll‘,)\) > sghl,, _ (sn me e Sn_ 1)+sgn ‘ ( ), and NZA wsn_1,u 7 0 only

Sn—m"

if the equahty ‘holds. That i is, é(wsjmm) > l(w) and L(us;,,.) < E( ). By Proposition 2.4 a), we have

w,A _ WS A 7 . . . aLs
N 2 eosn1u = Ns, 00, sy - By 1nduct10n Nén’ nesn_1,u 7 0 only if a series of inequalities
\
w, A ATy gy Vo
about u, w hold and Ng,”, .5, ,u =N, = 5:’“17 , - However, (ap—1, A\—a  ——ay_o) =

\%
3. Using Proposition 2.4 a) again, we know that N a“‘“"
we always obtain N’ wA

—1u
571 m Sn—1,% T O'

If a,_1 >3, thensgn,  (w)+(a,\) >0+3>2>sgn, (Sp—m---Sn_1)+sgn,  (u). By

T g

must be equal to 0. Therefore,

Proposition 2.4 a) we have N2 o . =0.
For A= o) +--- 4+, we assume u(n) = n. If k < n—1, we repeat the argument for the case

of apn_1 = 2,a;,,,—1 = 1. Then N, A wsn_1,u 7 0 only if a series of inequalities about u,w hold

Sn—m"

and N;‘:l)‘m 1 = N:; O:n" ;n L Since u'(n) = uspspq1 - sp—2(n) =u(n) =n,sgn,  (v)=

0. Thus sgn,  (w')+ (an,l,axfﬁ >0+2>1=sgn,  (Sn—m- - sn—1) +sgn,  (u). By

\%
Proposition 2.4 a), we obtain Nw ot , = 0. ]

Sn—m "Sn—1,U

Lemma 3.2. In H*(FY,), for any u € S, we have

S§182°*Sn— u 0-8182”.5774711‘/7 lf u(n) =

152 n—1 J—

7 Jor = { 0, ifu(n) ;é
(n—1) (2),,(1)

Proof. We have the reduced expression u = w; — - u; "u; "

Fristly, consider the case of u(n) = n. This means j,_, = 0. We observe that N9 o . #0
only if f(w) = £(u) + n — 1 and s183---s,—1 < w holds with the Bruhat order. Thus there exists
a subsequence of length n — 1 with product s185---s,_1 in reduced expression w = ugnill) . 511)
Therefore i,y = n — 1. Note that for any 1 <k <n —2, sgn,, (s1---5,-1) = 0. Without loss of
generality, suppose i1 = 1, that is, sgn,, (w) = 1.

If sgn,,, (u) = 0, by Proposition 2.4 a), we have NY2 o = 0. Otherwise sgn,, (u) = 1 (that is,
((usy) = £(u) — 1), as a consequence of Corollary 2.2, N0 . .= N0, | .. By induction

with l(w) —n+1, N9 o u = N¥“ 0 when l(wut) = f(w) — £(u~1) holds, otherwise

8182 Sp—1,id
,0 - - 10 -
Nioysn = 0. If L(wu™t) = £(w) — £(u™!) and N3 Con_ria 7 0, then wu™! =515, 1. We
conclude g®192"%n-1 |y g% = 1927 Sn-1%,
w1 w2 (@), (D
If u(n) # n, then j,_; > 0. By Corollary 2.2, we obtain ¢ n-1 U g“n-2 "2 %1 = g% 4
other terms. Due to the nonnegativity of Schubert structure constant, the nonzero term of g*1%2"sn-1
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(n-1) (n-2), (), (1)
o will appear in parts of the nonzero terms of (152" sn-1 U (g"n-1 Ug In—2 "2 "), Due to the
(n—1)
induced injective homomorphism H*(Gr(n — 1,n)) — H*(F{,), we have g%152"5n-1 J g “in-1 = (.

Therefore g5152"5n-1 U g% = 0. O

Proof of Theorem 3.1. If u(n) = n , by Lemma 3.1, 0% ""*n-1 x g% = g%1""5n=1 U g™ has no non-zero

quantum terms. By Lemma 3.2, it is equal to g®1"sn—1%,
If u(n) # n, by Lemma 3.2 and Lemma 3.1, 0% ""*»~1x¢g" has only quantum terms go® of the for-
m A\ = a)+---+a, _,. By Proposition 2.4, we have N;'f’f;...snfl,u # 0 only if (wSkSk+1 - Sn—28n—1)—
lw)=n—Fk and £(u) — l(uskSk+1 - Sn—1) = n — k. Then we have
A _ ~8n—1,0
N;IiSQ"'Sn_l,u - N;ﬁssz's')?;iflfusklsk-f—l"'57171 .

In particular, we have £(usg) = £(u) — 1 , so k > I. Note that usgsk+1 - sn—1(n) = u(k) = n if and
only if k =[. As a consequence of Lemma 3.2, N;‘ji’;?.’?;;;‘f;;;;ﬁﬂﬂ...SH # 0 if and only if ¥ = and
WSIS|41 * - Sp—2Sn—1 = $152° * * Sp_1USIS|+1 * - - Sp—25n—1. Lherefore, we have

8182 *Sp—1,U

NwA _ 1, if A= Au) and w =81 5,_1u,
0, otherwise.

O

3.3. Discussion at Quantum K-theory level. The K-theory K(G/P) of the flag varieties G/P
is a Gothendieck group generated by the isomorphism class [E] composed of algebraic vector bundles
on G/P. The additive structure and multiplicative structure of K (G/P) are given [E]+[F] := [E®F]
and [E] - [F] := [E ® F], respectively. We simply denote the Schubert class O% := [Oxw], and note
K(G/P) = @, cwr ZO™. In general, the quantum product of the quantum K theory is a formal
power series with respect to quantum parameters. But for the quantum K-theory QK (G/P) of flag
varieties , Anderson-Chen-Tseng [1] showed that the quantum product of any two Schubert classes

is still a polynomial in the quantum variable. Recall Ap = A\ {ap,, -+, an, }. As a consequence,
QK(G/P) = (K(G/P)®Clgny, "+ ,qn,)s *). The quantum product
O 5 O = Z KZ)773\Q>\1’)OW7

weWP ApeQV/Q})

is determined by the structure constants /@&f‘l’ , which is (complicated and signed) combination of

K-theoretic genus-zero 3-pointed (and 2-pointed) Gromov-Witten invariants (see e.g. [7,10] for more
details). We notice the following facts:

KW = NN holds whenever  £(u) + £(v) = £(w) + (c1(G/P), Ap).

Combining the properties and applications of the Seidel operator in the quantum K-theory of the
Grassmannian [6,32] with the discussion in this section on QH*(F¢,,), we conjecture that there are
the same expressions in quantum K-theory about Theorem 3.1 and Theorem 3.2.

Conjecture 3.1. Let 1 <m <n—1 andu € S,. Denote k:=n —u(n). In QK (F¥,), we have
(9)  T(OY) = O sn=2on-1 5 O% = gy (,) O" T,
(10) OSn—m " S$n—28n-1 4 U — q1—1q2—2 L q’rll:'rllq)\(ch)Tn*k(Osnf'm,""sn72snfl . OuTk).
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Assuming that the above conjecture is correct, we can obtain parts of quantum products of the
quantum K-theory by calculating classical products in K(G/P), similar to the case of quantum
cohomology. Furthermore, for any w € W, there is a unique (w’,w”) € W¥ x Wp such that
w = w'w”. In [23], Kato proved that there are the following “functoriality” in quantum K theory
of flag vaieties G/P with the natural projection map 7 : G/B — G/P (see also [7] for the special
case G/P — G/G = pt).

Proposition 3.1 (Theorem A of [23]). The following map is surjective algebra homomorphism:
) ’ 1, ifa; € Ap,
™ 1 QK(G/B) = QK(G/P); m.(0g)=0p, ma)= o
¢, if i ¢ Ap.

For QK (G/B), we abbreviate the Schubert class O = O%.

Example 3.3. Consider QK (F{4) and let u = s2835251. By Conjecture 3.1, T?(O%) = q1q2q3T (0%) =
2 )S1 82
q192q30 , and

5253 5 (05152 — ()5253 . (DS152 — ()S2535152 | ()91525352 _ ()S251585253
where the last equality is obtained by Pieri’s rule for the classical K-theory [27]. As a consequence,
0% % O = gy 43 45 "1 q2g3 T (O - O*1*2)
_ q2—1q3—17~2(052535152 | Qsis28352 _ (sas1sasasa)
= 4345 " T(2q30%°°*%" + qaqs 05153 — oq30%3°2%153)
= q1¢2q30' + gz 01535251 — g g3 03

Example 3.4. In QK (F{g), for u = $553545152838281, we have T(O") = q1¢2q394q5O*4°2%¢ . Based
on Conjecture 3.1 and the classical Pieri rule, we have
O%854% 5 O = g7 q5 245 ° 05 65 ° 14203qags T (0535455 - 04525
— q;1q§2q23q54T5(0313233843583 + (525354855483 + (525354855283 + (835485845253
— q1q2q3q4q56953 +,695152533435335452533251 +,693132335455543152333251 +_695253545533343152535251
— 01924394950°*"* — q1G2q3qaqs O™ — 2071 72FTATIIIIIIII 4 g 4943qaqs 04727,
We can use Young tableauz to express the partitions for Gr(3,6). For example, the Young tableau
gp represents partition (3,2,0), which corresponds to the Grassmannian type permutation 146235.
By Proposition 3.1, for m. : QK (Fls) — QK(Gr(3,6)), we have
Oj* Oﬁﬂj — OSPB * 07’358384515283
= m (O%354%5) % 7, (OY)
= 7, (0% « O%)
— ﬂ-* (q1q2q3q4q5053 _|_ 05152335455535452535251 + 05152535455545152335251 _|_ 05253543553545152535251
— 1924394G5 O™ — q1G2q3qaqs Q2% — 200%152538455838451 52855251 gy g 43495 0347253 )
— q30}993 + 0;5253545553345253 + 025253545554315253 _|’_ 0225354555354515253

5483 8283 518283545553545152S83 548283
- 30p ™ — qzOp™ — 203 +q30p

:q30@+0ﬁ+0@3+0@—q30m—q308—2O@+q3(9EP.

Abbreviate the quantum variable of QK (Gr(3,6)) as ¢ = g3, we have

OD*Ogﬂj:qOD—qOm—qOB—FqOEP-FOﬁ-FOQEH—O@a
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which is consistent with the calculation obtained by using the quantum Pieri rule for QK (Gr(3,6))
in [10]. This can be seen as an evidence of Conjecture 3.1.

We end this section with a question similar to Problem 3.1.

Problem 3.2. Foru e S,,1<i<j<n-—1, in QK(F{(,), what are the necessary and sufficient
conditions for O%i%i+175 5 O = O%%i+155 . O¥ (in terms of combinatorial information of u)? Is
it consistent with the necessary and sufficient conditions at the quantum cohomology level?
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