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Abstract. By using a “quantum-to-classical” reduction formula on the Gromov-Witten invari-

ants of flag vaireities F`n, we provide a new proof of the Seidel operator on the quantum coho-
mology ring QH∗(F`n). Further, we reprove a quantum Pieri rule with respect to certain special

Schubert class for QH∗(F`n). Finally, we propose a concrete conjecture on the corresponding

quantum Pieri rule for the quantum K-theory of F`n.

1. Introduction

The (big/small) quantum cohomology QH∗(X) of the complex projective manifold X is a defor-
mation of its classical cohomology ring H∗(X). Gromov-Witten invariants of genus 0 are used to
define the quantum product of QH∗(X), which virtually compute the number of rational curves (or
pseudo-holomorphic curves, from the perspective of symplectic geometry) that satisfy appropriate
conditions. The study of QH∗(X) has been a very popular research field since the notion of quantum
cohomology is introduced.

Classical cohomology H∗(·) is a contravariant functor. Morphisms between topological spaces
f : X → Y naturally induce the ring homorphism f∗ : H∗(X) → H∗(Y ). However, quantum
cohomology is different from classical cohomology, with the lackness of functoriality in general
case. Therefore, geometric objects have to be studied individually in general. This is one of the
important reasons that make the study of quantum cohomology extremely difficult. For some cases,
we can still discuss functoriality of quantum cohomology appropriately. For example, there is a
famous crepant resolution conjecture: for K-equivalent smooth projective varieties (or orbifolds,
Deligne-Mumford stacks) Y+, Y−, (that is, there exist birational morphism f± : X → Y± such
that f∗+KY+

∼= f∗−KY− ,) the corresponding quantum cohomologies QH∗(Y−), QH∗(Y+) should be
related through the analytic continuation of quantum parameters. This conjecture was first proposed
by Yongbin Ruan [36], and further developed by Bryan-Graber, Coates-Iritani-Tseng, Iritani and
Ruan [5, 15, 16, 22]. The conjecture is a widespread concerning question, for which there are many
progress, such as [12,14,19,26].

For the natural projection map between (partial) flag varieties, we can also talk about the functo-
riality of quantum cohomology appropriately. Flag varieties G/P are a class of projective manifolds
with very nice properties, where G is a connected complex semisimple Lie group and P is a parabolic
subgroup of G. The classical cohomology H∗(G/P ) has a natural Z-graded algebraic structure. Tak-
ing the Borel subgroupB ⊂ P ofG, we have a natural projection map π : G/B → G/P from the com-
plete flag variety G/B to the partial flag variety G/P . From the Leray-Serre spectral sequence, there
is a Z2-graded algebra isomorphism H∗(G/B) ∼= H∗(G/P )⊗H∗(P/B). Further, we take the para-
bolic subgroup P ′ that satisfies B ⊂ P ′ ⊂ P and obtain the corresponding fiber bundle P/B → P/P ′

as well as a Z2-graded algebraic structure on H∗(P/B). Combining them with the graded structure
induced by G/B → G/P , we establish a Z3-graded algebraic structure on H∗(G/B). In this way, we
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at most obtain a Zr+1-graded algebraic structure on H∗(G/B), where r is the semi-simple rank of
the Levi subgroup of P. And the induced morphism π∗ : H∗(G/P )→ H∗(G/B) is an injective ho-
momorphism, which can be regarded as part of the isomorphism of this graded algebra (in the form
of {α⊗1⊗

r}α∈H∗(G/P ) ). In [28,31] , Leung and the first named author used the Peterson-Woodward

comparison formula [34,39] to define a Zr+1-graded vector space structure on QH∗(G/B), and fur-
ther proved that QH∗(G/B) is a Zr+1 -filtered algebra under this graded structure. Moreover, its
induced Zr+1-graded algebra (after localization) is isomorphic to the tensor product of QH∗(G/P )
and r quantum cohomologies of the form QH∗(P ′/P ′′). In this way, a quantum version of the
Leray-Serre spectral sequence is given. This graded algebra has very nice applications, especially
on the ”quantum → classical” reduction principle. That is, 3-pointed genus zero Gromov-Witten
invariants of G/P with high degree can be reduced to the classical intersection number G/B under
certain conditions. In this “quantum→ classical” principle, we further obtained the applications on
quantum Pieri rules [20, 30] , which extended the quantum Pieri rule of Ciocan-Fontanine [13] and
the related work of Buch, Kresch and Tamvakis [8, 9, 13,24,25].

The (quantum) cohomology of the flag varieties SL(n,C)/P has a canonical additive basis of
Schubert classes σu. In the quantum product of Schubert classes,

σu ? σv =
∑
λP ,w

Nw,λP
u,v qλP σ

w,

the Schubert structure constant Nw,λP
u,v is a genus 0, 3-pointed Gromov-Witten invariant of G/P with

an enumerative meaning. In particular, it is a non-negative integer. When P is a maximal parabolic
subgroup, SL(n,C)/P = Gr(k, n) = {V ≤ Cn | dimV = k} is called a complex Grassmannian.
The corresponding Schubert class can be labeled by a partition. σu = σµ , where the partition
µ = (µ1, · · · , µk) = (u(k) − k, · · · , u(2) − 2, u(1) − 1) ∈ Zk satisfies n − k ≥ µ1 ≥ · · · ≥ µk ≥ 0.
We usually abbreviate the special partitions p = (p, 0, · · · , 0) , 1m = (1, · · · , 1, 0, · · · 0) ( m copies
of 1). These two special partitions are equivalent in the sense of Gr(k, n) ∼= Gr(n − k, n). The
multiplication formula σp ?σν is called the quantum Pieri rule, which was first given by Bertram [3].

The Seidel operator [37] σ1k? generates a cyclic group Z/nZ action on QH∗(Gr(k, n)) [2, 35], and
then Belkale provided a new proof of the quantum Pieri rule using this group action. This approach
is also directly generalized to the quantum K-theory for Grassmannians [6, 32]. For the quantum
cohomology of flag varieties G/P of general Lie-type, the corresponding Seidel operator was studied
in [11]. In this paper, we will follow this idea to re-study the quantum Pieri rule of the quantum
cohomology QH∗(F`n) of the complete flag variety F`n = SL(n,C)/B. That is, we hope to show

Quantum Pieri rule = classical Pieri rule + Seidel operator action.

To be more precise, we consider the Schubert class σs1s2···sn−1 of H∗(F`n), which is the image of
the special Schbuert class σ(1,··· ,1) in H∗(Gr(n − 1, n)) of the natural monomorphism H∗(Gr(n −
1, n)) −→ H∗(F`n). Here si = (i, i+ 1) is a transposition of the permutation group Sn. We use the
”quantum → classical” reduction principle to give a precise characterization of quantum product
with a Seidel operator T of QH∗(F`n) in Theorem 3.1, where T is defined by

T (σu) := σs1s2···sn−1 ? σu.

Combining it with the classical Pieri rule [38], we re-prove the quantum Pieri rule with respect to the
aforementioned special Schubert class in Theorem 3.2. We will define u ↑ i := (s1s2 · · · sn−1)iu and
λ(u), λ(u, i) in Section 3.1. Using these notations, Theorem 3.1 and Theorem 3.2 can be combined
and described as follows.
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Theorem 1.1. Let 1 ≤ m ≤ n− 1 and u ∈ Sn, Note k := n− u(n). In QH∗(F`n), we have

T (σu) = qλ(u)σ
u↑1(1)

σsn−m···sn−2sn−1 ∗ σu = q−1
1 q−2

2 · · · q
1−n
n−1qλ(u,k)T n−k(σsn−m···sn−2sn−1 ∪ σu↑k).(2)

It is our main motivation to the study of quantum Pieri rule at the quantum K-theoretical
level, by interpreting the quantum Pieri rule of QH∗(F`n) in the above way. In section 3.3, we
propose Conjecture 3.1. That is, we should be able to obtain the quantum K-theoretical one,
by simply replacing the Schubert cohomology class “σ” in Theorem 1.1 with the Schubert class
“O” in the K-theory K(F`n). Namely the study of the corresponding quantum Pieri rule for the
quantum K-theory QK(F`n) should be reduced to the Pieri rule for the K-theory K(F`n) obtained
by Lenart-Sottile [27]. This could help us to understand the general quantum Pieri rule [33] on
QK(F`n). Moreover, the quantum K-theory of the flag varieties SL(n,C)/P admits functoriality
induced by the natural projection map between flag varieties [7, 23]. With the help of the induced
surjective algebra homomorphism, we can understand the quantum Pieri rule of special Schubert
class index by sisi+1 · · · sj with general Schubert class in quantum K-theory of non-complete flag
varieties SL(n,C)/P (P 6= B). We provide Example 3.4 for F`6 and a Pieri-type product of for the
quantum K-theory of Gr(3, 6) induced by Conjecture 3.1, which is consistent with the quantum
Pieri rule [10] obtained by Buch-Mihalcea. This provides an evidence for our Conjecture 3.1.

Acknowledgement. The authors are supported in part by the National Key Research and Devel-
opment Program of China No. 2023YFA100980001 and NSFC 12271529.

2. Functoriality of quantum cohomology of flag varieties

In this section, we briefly review the functoriality of quantum cohomology of flag varities in the
series of work [28, 29, 31] and its application on the reduction of “quantum → classical”. On the
one hand, our statement will only focus on flag varieties of type An−1, which is very concrete. On
the other hand, in this section we will use the standard notation in Lie theory to indicate that the
corresponding results hold true for all Lie types.

2.1. Notations. We introduce commonly used notations in Lie theory. For more details, please refer
to [21]. Consider complex simple Lie group G = SL(n,C). Let B be the standard Borel subgroup
of G, consisting of upper-triangular matrices, and P be a parabolic subgroup of G containing B.
Denote by h the Lie algebra of the Lie subgroup T that consists of the diagonal matrices of G.
Let ∆ = {α1, α2, · · · , αn−1} ⊂ h∗ be the standard simple roots, and {α∨1 , α∨2 , · · · , α∨n−1} ⊂ h be
the simple coroots. Denote by 〈·, ·〉 : h∗ × h −→ C the natural pairing. Let Q∨ = ⊕ni=1Zα∨i and
ρ =

∑n
i=1 χi ∈ h∗, where χi are the fundamental weights satisfying 〈χi, α∨j 〉 = δi,j . The Weyl

group W of G is generated by the simple reflection {si := sαi | 1 ≤ i ≤ n − 1} and is isomorphic
to the permutation group Sn. Here the simple reflection si : h∗ → h∗; si(β) = β − 〈β, α∨i 〉αi
corresponds to transposition (i, i+ 1) in Sn. We freely interchange si and (i, i+ 1) whenever there
is no confusion. There is a standard length function (with respect to the generators {si}i) on the
Weyl group, denoted as ` : W → Z≥0. The parabolic subgroup P ⊃ B corresponds to a unique
subset ∆P = ∆ \ {αn1

, · · · , αnk} of ∆, where 1 ≤ n1 < · · · < nk ≤ n− 1.

1) ∆B = ∅. Let Pαi be the parabolic subgroup corresponding to the subset {αi}, then

Pαi = {(gab) ∈ SL(n,C) | gab = 0, if a > b and (a, b) 6= (i+ 1, i)}.
2) r := |∆P | is the semisimple rank of the Levi subgroup of P .
3) The root system R can be obtained from the action of the Weyl group on the set4 of simple

roots: R = W · 4 = R+ t (−R+), where R+ = R ∩ ⊕n−1
i=1 Z≥0αi is the set of positive roots

respect to 4. Denote R+
P := R ∩ ⊕α∈∆P

Z≥0α, Q∨P := ⊕α∈∆P
Zα∨.
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4) Let WP be the Weyl subgroup generated by {sα|α ∈ ∆P }, Then WP := {w ∈ W |`(w) ≤
`(v),∀v ∈ wWP } ⊂ W is the set of minimum length representatives of W/WP . Denote
n0 := 0, nk+1 := n. As a subset of Sn, we have

WP = {w ∈ Sn | w(ni−1 + 1) < w(ni−1 + 2) < · · · < w(ni), ∀1 ≤ i ≤ k + 1}.

5) There is a unique longest element in W (resp. WP ), denoted as w0 (resp. wP ). As a
permutation of Sn, w0(j) = n+ 1− j, ∀1 ≤ j ≤ n.

6) W ∼= N(T )/T , here N(T ) ≤ G is the normalizer of T in G. For u ∈ W , we denote by
u̇ ∈ N(T ) a representative of the corresponding coset set in N(T )/T under this standard
isomorphism.

2.2. Quantum cohomology. The content of this section mainly follows from [17,18]. Flag varieties
G/P parameterize partial flags of specific type in Cn: G/P = {Vn1 ≤ · · · ≤ Vnk ≤ Cn | dimVnj =
nj ,∀ j} =: F`n1,··· ,nk;n In particular, G/B = F`1,2,··· ,n−1;n =: F`n is a complete flag variety. The
(opposite) Schubert varieties Xu, Xu in G/P are respectively defined by

Xu = Bu̇P/P , Xu = ẇ0Bẇ0u̇P/P .

Thus the complex dimension of Xu (resp. codimension of Xu) is `(u). The Schubert (co)homology
classes σu := [Xu] ∈ H2`(u)(G/P,Z) and σuP := P.D.[Xu] ∈ H2`(u)(G/P,Z) respectively form an
additive bases [4] of the (co)homology of the flag varieties X = G/P :

H∗(G/P,Z) =
⊕
u∈WP

Zσu, H∗(G/P,Z) =
⊕
u∈WP

ZσuP .

Note that the natural projection map π : G/B → G/P induces a monomorphism

π∗ : H∗(G/P,Z)→ H∗(G/B,Z);π∗(σuP ) = σuB .

Therefore we abbreviate σuP , σ
u
B as σu. Besides, we have the canoincal isomorphism H2(G/P,Z) =⊕

αi∈∆−∆P
Zσsi ∼= Q∨/Q∨P of abelian groups.

Given λP ∈ H2(G/P,Z) = Q∨/Q∨P , we denote by M0,3(G/P, λP ) = {(f : P1 → G/P ; p1, p2, p3) |
f∗([P1]) = λP , f is a stable map} the moduli space of 3-pointed, genus-zero stable maps of degree
λP . This moduli space is an orbifold, and its dimension is equal to dimG/P + 〈c1(G/P ), λP 〉. Let
evi : M0,3(G/P, λP ) −→ G/P be the i-th evaluation map. For αnj ∈ ∆ − ∆P , we introduce the

formal variable qnj . For λP =
∑
αnj∈∆−∆P

bjα
∨
nj + Q∨P , we denote qλP =

∏
αnj∈∆−∆P

q
bj
nj , The

(small) quantum cohomology QH∗(G/P ) = (H∗(G/P )⊗C[qn1
, · · · , qnk ], ?) of the flag variety G/P

is defined by

σu ? σv =
∑

λP∈H2(G/P,Z),w∈WP

Nw,λP
u,v qλP σ

w.

Here the quantum Schubert structure constant Nw,λP
u,v is a genus-0, 3-pointed Gromov-Witten in-

variant of degree λP on G/P , given by the following integral

Nw,λP
u,v =

∫
M0,3(G/P,λP )

ev∗1(σu) ∪ ev∗2(σv) ∪ ev∗3(σw
∨

),

where w∨ := w0wwP ∈WP . Geometrically, for g, g′ ∈ G in general position, we have

Nw,λP
u,v = ]{f : P1 → G/P | f∗([P1]) = λP , f(0) ∈ Xu, f(1) ∈ gXv, f(∞) ∈ g′Xw∨} ∈ Z≥0.(3)

By the definition of the moduli space and its dimension formula, we have

(4) Nw,λP
u,v = 0 unless `(u) + `(v) = `(w) + 〈c1(G/P ), λP 〉 and λP ≥ 0.
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Here λP ≥ 0 means bj ≥ 0 , ∀ 1 ≤ j ≤ k. Since c1(G/P ) > 0 , the right side of the quantum product
is a finite sum. Therefore,

1) QH∗(G/P ) =
⊕

CqλP σw is a Z-graded algebra, where the Z-graded structure is naturally
given by the degree of the basis {qλP σw} :

deg qλP σ
w = `(w) + 〈c1(G/P ), λP 〉.

In particular for G/B, we have 〈c1(G/B), λ〉 = 〈2ρ, λ〉, where λ ∈ H2(G/B,Z) = Q∨.
2) σu ∪ σv = σu ? σv|q=0. That is, the quantum cohomology QH∗(G/P ) is a deformation of

the classical cohomology H∗(G/P ).

2.3. Functoriality of quantum cohomology. In this section, we briefly explain the Z2-graded
algebra structure on QH∗(G/B) introduced by [28,29,31] for the special case of natural projection
map π : G/B → G/Pα (α ∈ ∆) (note that r = 1). This structure can be regarded as an induced
“morphism” at the quantum cohomology level from π, so we roughly call it “functoriality”.

Note that when α = αi, the projection map π is the natural forgetful map F`n = G/B →
G/Pαi = F`1,2,··· ,i−1,i+1,··· ,n−1;n, which is a fiber bundle with fiber Pαi/B

∼= P1. As vector spaces,
QH∗(G/B) = H∗(G/B) ⊗ C[q1, · · · , qn−1]. We consider the basis {qλσw|(w, λ) ∈ W × Q∨} of the
localization QH∗(G/B)[q−1

1 , q−1
2 , · · · , q−1

n−1] of QH∗(G/B), and introduce a map sgnα with respect
to a given simple root α ∈ 4:

sgnα : W −→ {0, 1}; sgnα(w) =

{
1, `(w)− `(wsα) > 0,

0, `(w)− `(wsα) ≤ 0.

Note that `(w)− `(wsα) = ±1 , and `(w)− `(wsα) = 1 holds if and only if u := wsα ∈WPα . Then
we can define a Z2-grading map with respect to α as follows:

grα : W ×Q∨ −→ Z2;

grα(qλσ
w) = (sgnα(w) + 〈α, λ〉, `(w) + 〈2ρ, λ〉 − sgnα(w)− 〈α, λ〉).

We notice

a) qλσ
w ∈ QH∗(G/B) (resp. QH∗(G/B)[q−1

i ]) if and only if qλ ∈ C[q1, · · · , qn−1] (resp.

C[q1, · · · , qn−1][q−1
i ]).

b) Denote grα(qλσ
w) = (a, b), then we have deg(qλσ

w) = a + b. Therefore grα is actually a
Z2-graded refinement of the Z-graded structure of QH∗(G/B) in Section 2.2.

We use the lexicographical order on Z2. That is, a = (a1, a2) < b = (b1, b2) if and only if either
a1 < b1 or (a1 = b1 and a2 < b2) holds. Then we define

Fa :=
⊕

grα(qλσw)≤a

Cqλσw ⊂ QH∗(G/B), F ′a :=
⊕

grα(qλσw)≤a

Cqλσw ⊂ QH∗(G/B)[q−1
α∨ ].

As a consequence, we obtain a family F = {Fa}a∈Z2 of vector subspaces of QH∗(G/B) , and a family
F ′ of vector subspaces of localization QH∗(G/B)[q−1

α∨ ] of QH∗(G/B) (where F ′ can be regarded as
the natural extension of F). Their associated Z2-graded vector spaces are

GrF (QH∗(G/B)) =
⊕
a∈Z2

GrFa , GrF
′
(QH∗(G/B)[q−1

α∨ ]) =
⊕
a∈Z2

GrF
′

a

respectively, where GrFa := Fa/ ∪b<a Fb and GrF
′

a := F ′a/ ∪b<a F
′
b. The definition of the map

grα is inspired by the following Peterson-Woodward comparison formula, which is proposed by
Peterson in his unpublished work [34], and proved by Woodward [39] later. This formula reduces
the computation of the Gromov-Witten invariant Nw,λP

u,v of any (partial) flag variety G/P to the

computation of the corresponding Gromov-Witten invariant N
wwPwP ′ ,λB
u,v of the complete flag variety
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G/B. In general, the corresponding Zr+1-graded map is more complicated, for which we refer to [28]
for the details.

Proposition 2.1 (Peterson-Woodward comparision formula). (1) Let λP ∈ Q∨/Q∨P , then there is
a unique λB ∈ Q∨ such that λP = λB +Q∨P and for all γ ∈ R+

P , 〈γ, λB〉 ∈ {0,−1}.
(2) For any u, v, w ∈WP , we have

Nw,λP
u,v = N

wwPwP ′ ,λB
u,v ,

where P ′ is the parabolic subgroup corresponding to the subset ∆P ′ = {β ∈ 4P |〈β, λB〉 = 0}.

According to the Peterson-Woodward comparison formula, we get an injection map between
complex vector spaces:

ψα : QH∗(G/Pα) −→ QH∗(G/B),

qλPασ
w 7−→ qλBσ

wwPwP ′ .

Proposition 2.2 ( Theorem 1.2 of [28]). QH∗(G/B) is a Z2-filtered algebra with respect to F . That
is, we have

Fa ? Fb ⊂ Fa+b,

for any a, b ∈ Z2.

Denote GrFver(QH
∗(G/B)) :=

⊕
i∈Z

GrF(i,0) and GrFhor(QH
∗(G/B)) :=

⊕
j∈Z

GrF(0,j). By replacing

F with F ′, we define this similarly for QH∗(G/B)[q−1
α∨ ]. Furthermore, we consider the standard

isomorphism QH∗(P1) ∼= C[x,t]
(x2−t) , where t labels the quantum variable of QH∗(P1). As a core

consequence of Proposition 2.2 , we have

Corollary 2.1 (Theorem 1.4 of [28] ). The following maps Ψα
ver and Ψα

hor are well-defined, and
they are algebra isomorphisms. 1

Ψα
ver : QH∗(P1) −→ GrFver(QH

∗(G/B)); x 7→ sα, t 7→ qα∨ .

Ψα
hor : QH∗(G/Pα) −→ GrFhor(QH

∗(G/B)); qλPασ
w 7→ ψα(qλPασ

w) .

Here sα ∈ GrF(1,0) ⊂ GrFvert(QH
∗(G/B)) dentoes the graded component of σsα + ∪b<(1,0)Fb. After

a natural extension , we have the following Z2-graded algebra isomorphism:

Ψα
ver ⊗Ψα

hor : QH∗(P1)[t−1]⊗QH∗(G/Pα)
∼=−→ GrF

′
(QH∗(G/B)[q−1

α∨ ]).

Remark 2.1. The proofs of Proposition 2.2 and Corollary 2.1 are mainly based on the non-negativity
of the structure constant Nw,λP

u,v , the Peterson-Woodward comparison formula and the following
quantum Chevalley formula (for general G/P , see [18]), and the induction on `(u).

Proposition 2.3. Let u ∈W and 1 ≤ i ≤ n− 1. In QH∗(G/B), we have

σu ? σsi =
∑
〈χi, γ∨〉σusγ +

∑
〈χi, γ∨〉qγ∨σusγ ,

the first sum over positive roots γ ∈ R+ that satisfy `(usγ) = `(u) + 1, and the second sum over
positive roots γ ∈ R+ that satisfy `(usγ) = `(u) + 1− 〈2ρ, γ∨〉.

1In terms of notations of [28], Ψαver = Ψ1 and Ψαhor = Ψ2.
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2.4. “Quantum → Classical” reduction. Corollary 2.1 can give applications of Gromov-Witten
invariants in the “quantum → classical” reduction. We illustrate the main idea with a simple
example.

Example 2.1. Consider G = SL(3,C), α = α1. That is, G/B = F`3, G/Pα = Gr(1, 3) = P2.
Then we have

Ct⊗ σs1s2P = (Ψα
ver ⊗Ψα

hor)
−1(Cq1σ

s1s2
B )

= (Ψα
ver ⊗Ψα

hor)
−1(σs2s1B ? σs2s1B )

= (Ψα
ver ⊗Ψα

hor)
−1(σs2s1B ) ? (Ψα

ver ⊗Ψα
hor)
−1(σs2s1B )

= (x⊗ σs2P ) ? (x⊗ σs2P )

= (x ?P1 x)⊗ (σs2P ?P σ
s2
P )

= t⊗Dσs1s2P .

Therefore, we have C = D. Note that C = N
s1s2,α

∨
1

s2s1,s2s1 is the Gromov-Witten invariant of degree
α∨1 in QH∗(G/B). D = Ns1s2,0

s2,s2 is an intersection number in the classical cohomology H∗(G/Pα),
which can also be regarded as a classical intersection number in H∗(G/B). Therefore we obtain
“quantum to classical” reduction:

N
s1s2,α

∨
1

s2s1,s2s1 = Ns1s2,0
s2,s2 .

From the definition of the graded mapping grα, we immediately obtain:

Lemma 2.1. Let u, v, w ∈ W and λ ∈ Q∨. Then we have grα(σu) + grα(σv) = grα(qλσ
w) if and

only if the following two conditions both hold true:

(1) `(w) + 〈2ρ, λ〉 = `(u) + `(v), (2) sgnα(w) + 〈α, λ〉 = sgnα(u) + sgnα(v).

Therefore, based on the idea of Example 2.1 and the above lemma, using Corollary 2.1, we can
obtain the following reduction.

Proposition 2.4 (Theorem 1.1 of [29]). For any u, v, w ∈W and any λ ∈ Q∨, we have

a) Nw,λ
u,v = 0 unless sgnα(w) + 〈α, λ〉 ≤ sgnα(u) + sgnα(v) for all α ∈ ∆.

b) If sgnα(w) + 〈α, λ〉 = sgnα(u) + sgnα(v) = 2 holds for some α ∈ ∆, then

Nw,λ
u,v = Nw,λ−α∨

usα,vsα =

N
wsα,λ−α∨
u,vsα , sgnα(w) = 0,

Nwsα,λ
u,vsα , sgnα(w) = 1 .

Corollary 2.2. If u, v, w ∈W and α ∈ ∆ satisfy sgnα(v) = sgnα(w) = 1 and sgnα(u) = 0, then

Nw,0
u,v = Nwsα,0

u,vsα .

Proof. Let ū = v, v̄ = usα, w̄ = wsα , From the proposition sgnα(w̄) = 0 and sgnα(w̄) + 〈α, α∨〉 =
sgnα(ū) + sgnα(v̄) = 2 , Therefore from Proposition 2.4,

Nwsα,0
u,vsα = Nwsα,0

vsα,u = N w̄,α∨−α∨
ūsα,v̄sα = N w̄sα,α

∨−α∨
ū,v̄sα = Nw,0

v,u = Nw,0
u,v .

�

Example 2.2. Consider G/B = F`4. Take u = s3s2s1s2, v = s2s1s2, w = s1s2s3 and λ = α∨1 +α∨2 .

Nw,λ
u,v = N

ws3,λ+α∨3
u,vs3 = N

s1s2,α
∨
1 +α∨2 +α∨3

s3s2s1s2,s2s1s2s3 ,

Nw,λ
u,v = N

s1,α
∨
1 +α∨2 +α∨3

s3s2s1,s2s1s2s3 = N
s1s3,α

∨
1 +α∨2

s3s2s1,s2s1s2 = N
s1s3s2,α

∨
1

s3s2s1,s2s1 = Ns1s3s2,0
s3s2,s2 = 1.



8 CHANGZHENG LI AND JIAYU SONG

We call u ∈ Sn a Grassmannian type permutation if there exists k such that u(1) < u(2) <
· · · < u(k) and u(k + 1) < u(k + 2) < · · · < u(n) , As an application of the “quantum → classical”
reduction, we have

Proposition 2.5 (Theorem 1.2 of [29]). Let u, v, w ∈ Sn and λ ∈ Q∨, If u is Grassmannian type
permutation, then there is v′, w′ ∈ Sn such that in QH∗(F`n),

Nw,λ
u,v = Nw′,0

u,v′ .

In the next section, we will discuss the special Grassmannian type permutation u = s1s2 · · · sn−1

in detail.

3. From Seidel representation to quantum Pieri rule

In this section, we discuss how to use Seidel representation in QH∗(F`n) to obtain the quantum
Pieri rule of the form σsisi+1···sn−1 ? σu, and propose expectations at quantum K-theory level.

3.1. Seidel operator and quantum Pieri rule. In Sn, s1s2 · · · sn−1 = (1, 2, · · · , n) is an n-

cyle. So 〈s1s2 · · · sn−1〉 ∼= Z/nZ is a cyclic group of order n. Denote u
(m)
j = sm−j+1 · · · sm−1sm

(0 ≤ j ≤ m ) and u
(m)
0 := id. For any u ∈ Sn, we have the following properties (see Corollary 2.6

in [28] ):

(1) There exists a unique (jn−1, · · · , j2, j1) such that u = u
(n−1)
jn−1

· · ·u(2)
j2
u

(1)
j1

is a reduced expres-

sion of u.
(2) u(n) = n if and only if jn−1 = 0. We denote λ(u) := 0 ∈ Q∨.
(3) Denote j0 := 0. If u(n) 6= n, then the set {i | ji > 0, ji−1 = 0, 1 ≤ i ≤ n− 1} is not empty,

and we denote the maximum value of the set as l. The permutation u has the reduced
expression of form u = vsn−1 · · · sl+1sl such that

(a) v = u
(n−2)
jn−1−1 · · ·u

(l−1)
jl−1 u

(l−2)
jl−2

· · ·u(1)
j1

= uslsl+1 · · · sn−1 does not contain the term sn−1;

(b) `(u)− `(uslsl+1 · · · sn−1) = n− l;
(c) `(u)− `(usl−1sl · · · sn−1) 6= n− l + 1.

Now we define

λ(u) := α∨l + α∨l+1 + · · ·+ α∨n−1, and qλ(u) := qlql+1 · · · qn−1.(5)

Lemma 3.1. Let 1 ≤ m ≤ n− 1, u ∈ Sn, λ ∈ Q∨. Then in QH∗(F`n), we have Nw,λ
sn−m···sn−1,u 6= 0

only if u(n) 6= n and there exists 1 ≤ k ≤ n− 1 such that λ = α∨k + · · ·+ α∨n−1.

Theorem 3.1. Let u ∈ Sn. In QH∗(F`n), we have

σs1s2···sn−1 ? σu =

{
σs1s2···sn−1u, if u(n) = n;

qλ(u)σ
s1s2···sn−1u, if u(n) 6= n.

We will skip the proof of the above lemma and theorem first, the corresponding details for which
will be given in the next section. The above theorem inspires the following definition.

Definition 3.1. For u ∈ Sn and k ∈ Z≥0, we define

u ↑ k := (s1s2 · · · sn−1)ku ∈ Sn, λ(u, k) :=

k−1∑
j=0

λ(u ↑ j).(6)

The operator T := σs1s2···sn−1? is called a Seidel operator of QH∗(F`n).
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From Theorem 3.1, for any u ∈ Sn and k ∈ Z≥0, in QH∗(F`n) we have

T k(σu) = qλ(u,k)σ
u↑k.

Note that u ↑ k = u if and only if n|k. Therefore the operator

T̂ : H∗(F`n)→ H∗(F`n); T̂ (σu) := T (σu)|q=1 = σu↑k

induced by T generates a cyclic group Z/nZ action on H∗(F`n), which is called the Seidel repre-
sentation.

Example 3.1. The permutation u ∈ Sn can be represented by a line of its image: u = u(1), · · · , u(n).
For 1 ≤ k ≤ n, id ↑ k = k + 1, k + 2, · · · , n, 1, 2, · · · , k ∈ Sn exactly corresponds to the maximum
partition (k, k, · · · , k) associated with the Grassmannian Gr(n − k, n). By induction, λ(id, k) −
λ(id, k − 1) = λ(id ↑ (k − 1)) = α∨n−1 + α∨n−2 + · · ·+ α∨n−k+1. Therefore

T k(σid) = qk−1
n−1q

k−2
n−2 · · · qn−k+1σ

id↑k,(7)

where σid↑k = π∗(P.D.[pt]) is the image of the highest degree Schubert class P.D.[pt] in H∗(Gr(n−
k, n)) under the induced homomorphism π∗ of the natural projection map π : F`n → Gr(n− k, n).

As an application of the Seidel operator, we can obtain the following quantum Pieri rule with
respect to the special Schubert class σsn−m···sn−2sn−1 .

Theorem 3.2. Let 1 ≤ m ≤ n− 1 and u ∈ Sn. Denote k := n− u(n). In QH∗(F`n), we have

σsn−m···sn−2sn−1 ? σu = q−1
1 q−2

2 · · · q
1−n
n−1qλ(u,k)T n−k(σsn−m···sn−2sn−1 ∪ σu↑k).(8)

Proof. Observe that v(n) = n when v := u ↑ k. Based on the definition of the Seidel operator,
equation (7), and the commutativity and the associativity of the quantum product ?, we have

T i(x ? y) = x ? T i(y), T n(x) = T n(id) ? x = q1q
2
2 · · · qn−1

n−1x,

for any x, y ∈ QH∗(F`n) and i ∈ Z≥0. Therefore,

q1q
2
2 · · · qn−1

n−1(σsn−m···sn−2sn−1 ? σu) = T n−k(σsn−m···sn−2sn−1 ? T kσu)

= T n−k(σsn−m···sn−2sn−1 ? qλ(u,k)σ
v)

= T n−k(σsn−m···sn−2sn−1 ∪ qλ(u,k)σ
v),

the last equality in which is obtained by Lemma 3.1.
�

Example 3.2. In S5, u = s2s3s4s1s2s3s1 = 43512. So k = 5−u(5) = 3 and λ(u ↑ 0) = λ(u) = α∨3 +
α∨4 . We have u ↑ 1 = s1s2s3s4s2s3s4s1s2s3s1 = s3s4s2s3s1s2s1, so λ(u ↑ 1) = α∨1 + α∨2 + α∨3 + α∨4 ;
u ↑ 2 = s1s2s3s4s3s4s2s3s1s2s1 = s4s3s2, so λ(u ↑ 2) = α∨2 + α∨3 + α∨4 ; hence u ↑ 3 = s1 = 21345,
qλ(u,3) = qλ(u↑0)+λ(u↑1)+λ(u↑2) = q1q

2
2q

3
3q

3
4. By Theorem 3.2, in QH∗(F`5), we have

σs2s3s4 ? σu = q−1
1 q−2

2 q−3
3 q−4

4 qλ(u,3)T (σs2s3s4 ∪ σu↑3))

= q−1
4 T 2(σs2s3s4 ∪ σs1)

= q−1
4 T 2(σs2s3s4s1 + σs1s2s3s4)

= q−1
4 T (q4σ

s3s4s1s2s3s1 + q4σ
s2s3s4s1s2s3)

= q3q4σ
s4s2s3s1s2s1 + q3q4σ

s3s4s2s3s1s2 .

Problem 3.1. For u ∈ Sn, 1 ≤ i < j < n−1 , in QH∗(F`n) , what are the necessary and sufficient
conditions for σsisi+1···sj ? σu = σsisi+1···sj ∪ σu (in terms of combinatorial information of u)?
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3.2. Proof of Theorem 3.1. We start by proving Lemma 3.1,

Proof of Lemma 3.1 . Note that σsn−m···sn−1 appears in the quantum product (σsn−1)m = σsn−1 ?
· · · ? σsn−1 (m copies). By the non-negativity of the quantum Schubert structure constant, we have

Nw,λ
sn−m···sn−1,u 6= 0 only if qλσ

w appears in (σsn−1)m ? σu. According to the quantum Chevalley

formula (Proposition 2.3 ), λ =
∑n−1
j=1 ajα

∨
j satisfies (i) an−1 ≥ 1 ; (ii) for any 1 ≤ j < n − 1,

0 ≤ aj ≤ an−1, and if aj 6= 0 then aj+1 6= 0. In particular, if an−1 = 1, then there exists
1 ≤ l ≤ n− 1 such that λ = α∨k + · · ·+ α∨n−1.

If an−1 = 2, we denote j0 := 0 and jmin := max{j | aj−1 < 2, aj = 2, 1 ≤ j ≤ n− 1}. If ajmin−1 =

0, then λ =
∑jmin−2
j=1 ajα

∨
j + 2α∨jmin

+ 2α∨jmin+1 + · · ·+ 2α∨n−1. Obviously sgnαjmin
(w) + 〈αjmin

, λ〉 >
sgnαjmin

(sn−m · · · sn−1) + sgnαjmin
(u). By Proposition 2.4 a), we have Nw,λ

sn−m···sn−1,u = 0. Then we

consider the case ajmin−1 = 1. Note that 〈αjmin
, λ〉 = 1 and sgnαjmin

(sn−m · · · sn−1) = 0, hence we

obtain sgnαjmin
(w) + 〈αjmin , λ〉 ≥ sgnαjmin

(sn−m · · · sn−1) + sgnαjmin
(u), and Nw,λ

sn−m···sn−1,u 6= 0 only

if the equality holds. That is, `(wsjmin) > `(w) and `(usjmin) < `(u). By Proposition 2.4 a), we have

Nw,λ
sn−m···sn−1,u = N

wsjmin
,λ−α∨jmin

sn−m···sn−1,usjmin
. By induction, Nw,λ

sn−m···sn−1,u 6= 0 only if a series of inequalities

about u,w hold and Nw,λ
sn−m···sn−1,u = N

w′,λ−α∨jmin
−···−α∨n−2

sn−m···sn−1,u′
. However, 〈αn−1, λ−α∨jmin

−· · ·−α∨n−2〉 =

3. Using Proposition 2.4 a) again, we know that N
w′,λ−α∨jmin

−···−α∨n−2

sn−m···sn−1,u′
must be equal to 0. Therefore,

we always obtain Nw,λ
sn−m···sn−1,u = 0.

If an−1 ≥ 3 , then sgnαn−1
(w) + 〈α, λ〉 ≥ 0 + 3 > 2 ≥ sgnαn−1

(sn−m · · · sn−1) + sgnαn−1
(u). By

Proposition 2.4 a), we have Nw,λ
sn−m···sn−1,u = 0.

For λ = α∨k + · · ·+α∨n−1, we assume u(n) = n. If k < n− 1, we repeat the argument for the case

of an−1 = 2, ajmin−1 = 1. Then Nw,λ
sn−m···sn−1,u 6= 0 only if a series of inequalities about u,w hold

and Nw,λ
sn−m···sn−1,u = N

w′,α∨n−1

sn−m···sn−1,u′
. Since u′(n) = usksk+1 · · · sn−2(n) = u(n) = n , sgnαn−1

(u′) =

0. Thus sgnαn−1
(w′) + 〈αn−1, α

∨
n−1〉 ≥ 0 + 2 > 1 = sgnαn−1

(sn−m · · · sn−1) + sgnαn−1
(u′). By

Proposition 2.4 a), we obtain N
w′,α∨n−1

sn−m···sn−1,u′
= 0. �

Lemma 3.2. In H∗(F`n), for any u ∈ Sn, we have

σs1s2···sn−1 ∪ σu =

{
σs1s2···sn−1u, if u(n) = n;

0, if u(n) 6= n.

Proof. We have the reduced expression u = u
(n−1)
jn−1

· · ·u(2)
j2
u

(1)
j1

.

Fristly, consider the case of u(n) = n. This means jn−1 = 0. We observe that Nw,0
s1s2···sn−1,u 6= 0

only if `(w) = `(u) + n − 1 and s1s2 · · · sn−1 ≤ w holds with the Bruhat order. Thus there exists

a subsequence of length n− 1 with product s1s2 · · · sn−1 in reduced expression w = u
(n−1)
in−1

· · ·u(1)
i1

.

Therefore in−1 = n − 1. Note that for any 1 ≤ k ≤ n − 2, sgnαk(s1 · · · sn−1) = 0. Without loss of
generality, suppose i1 = 1, that is, sgnα1

(w) = 1.

If sgnα1
(u) = 0, by Proposition 2.4 a), we have Nw,0

s1s2···sn−1,u = 0. Otherwise sgnα1
(u) = 1 (that is,

`(us1) = `(u)− 1), as a consequence of Corollary 2.2, Nw,0
s1s2···sn−1,u = Nws1,0

s1s2···sn−1,us1 . By induction

with `(w) − n + 1, Nw,0
s1s2···sn−1,u = Nwu−1,0

s1s2···sn−1,id
when `(wu−1) = `(w) − `(u−1) holds, otherwise

Nw,0
s1s2···sn−1,u = 0. If `(wu−1) = `(w)− `(u−1) and Nwu−1,0

s1s2···sn−1,id
6= 0, then wu−1 = s1 · · · sn−1. We

conclude σs1s2···sn−1 ∪ σu = σs1s2···sn−1u.

If u(n) 6= n, then jn−1 > 0. By Corollary 2.2, we obtain σ
u
(n−1)
jn−1 ∪ σu

(n−2)
jn−2

···u(2)
j2
u
(1)
j1 = σu +

other terms. Due to the nonnegativity of Schubert structure constant, the nonzero term of σs1s2···sn−1∪
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σu will appear in parts of the nonzero terms of (σs1s2···sn−1 ∪ (σ
u
(n−1)
jn−1 ∪σu

(n−2)
jn−2

···u(2)
j2
u
(1)
j1 ). Due to the

induced injective homomorphism H∗(Gr(n− 1, n))→ H∗(F`n), we have σs1s2···sn−1 ∪ σu
(n−1)
jn−1 = 0.

Therefore σs1s2···sn−1 ∪ σu = 0. �

Proof of Theorem 3.1. If u(n) = n , by Lemma 3.1, σs1···sn−1 ?σu = σs1···sn−1 ∪σu has no non-zero
quantum terms. By Lemma 3.2, it is equal to σs1···sn−1u.

If u(n) 6= n , by Lemma 3.2 and Lemma 3.1, σs1···sn−1?σu has only quantum terms qλσ
w of the for-

m λ = α∨k+· · ·+α∨n−1. By Proposition 2.4, we haveNw,λ
s1s2···sn−1,u 6= 0 only if `(wsksk+1 · · · sn−2sn−1)−

`(w) = n− k and `(u)− `(usksk+1 · · · sn−1) = n− k. Then we have

Nw,λ
s1s2···sn−1,u = N

wsksk+1···sn−1,0
s1s2···sn−1,usksk+1···sn−1 .

In particular, we have `(usk) = `(u)− 1 , so k ≥ l. Note that usksk+1 · · · sn−1(n) = u(k) = n if and

only if k = l. As a consequence of Lemma 3.2, N
wsksk+1···sn−1,0
s1s2···sn−1,usksk+1···sn−1 6= 0 if and only if k = l and

wslsl+1 · · · sn−2sn−1 = s1s2 · · · sn−1uslsl+1 · · · sn−2sn−1. Therefore, we have

Nw,λ
s1s2···sn−1,u =

{
1, if λ = λ(u) and w = s1 · · · sn−1u,

0, otherwise.

�

3.3. Discussion at Quantum K-theory level. The K-theory K(G/P ) of the flag varieties G/P
is a Gothendieck group generated by the isomorphism class [E] composed of algebraic vector bundles
onG/P . The additive structure and multiplicative structure ofK(G/P ) are given [E]+[F ] := [E⊕F ]
and [E] · [F ] := [E ⊗ F ], respectively. We simply denote the Schubert class OwP := [OXw ], and note
K(G/P ) =

⊕
w∈WP ZOw. In general, the quantum product of the quantum K theory is a formal

power series with respect to quantum parameters. But for the quantum K-theory QK(G/P ) of flag
varieties , Anderson-Chen-Tseng [1] showed that the quantum product of any two Schubert classes
is still a polynomial in the quantum variable. Recall ∆P = ∆ \ {αn1

, · · · , αnk}. As a consequence,
QK(G/P ) = (K(G/P )⊗ C[qn1

, · · · , qnk ], ∗). The quantum product

Ou ∗ Ov =
∑

w∈WP ,λP∈Q∨/Q∨P )

κw,λu,v qλPOw,

is determined by the structure constants κw,λPu,v , which is (complicated and signed) combination of
K-theoretic genus-zero 3-pointed (and 2-pointed) Gromov-Witten invariants (see e.g. [7,10] for more
details). We notice the following facts:

κw,λPu,v = Nw,λP
u,v holds whenever `(u) + `(v) = `(w) + 〈c1(G/P ), λP 〉.

Combining the properties and applications of the Seidel operator in the quantum K-theory of the
Grassmannian [6,32] with the discussion in this section on QH∗(F`n), we conjecture that there are
the same expressions in quantum K-theory about Theorem 3.1 and Theorem 3.2.

Conjecture 3.1. Let 1 ≤ m ≤ n− 1 and u ∈ Sn. Denote k := n− u(n). In QK(F`n), we have

T (Ou) := Os1···sn−2sn−1 ∗ Ou = qλ(u)Ou↑1,(9)

Osn−m···sn−2sn−1 ∗ Ou = q−1
1 q−2

2 · · · q
1−n
n−1qλ(u,k)T n−k(Osn−m···sn−2sn−1 · Ou↑k).(10)
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Assuming that the above conjecture is correct, we can obtain parts of quantum products of the
quantum K-theory by calculating classical products in K(G/P ), similar to the case of quantum
cohomology. Furthermore, for any w ∈ W , there is a unique (w′, w′′) ∈ WP × WP such that
w = w′w′′. In [23], Kato proved that there are the following “functoriality” in quantum K theory
of flag vaieties G/P with the natural projection map π : G/B → G/P (see also [7] for the special
case G/P → G/G = pt).

Proposition 3.1 (Theorem A of [23]). The following map is surjective algebra homomorphism:

π∗ : QK(G/B)→ QK(G/P ); π∗(OwB) = Ow
′

P , π∗(qi) =

{
1, if αi ∈ ∆P ,

qi, if αi /∈ ∆P .

For QK(G/B), we abbreviate the Schubert class Ou = OuB .

Example 3.3. Consider QK(F`4) and let u = s2s3s2s1. By Conjecture 3.1, T 2(Ou) = q1q2q3T (Os3) =
q1q2q

2
3Os1s2 , and

Os2s3 ∗ Os1s2 = Os2s3 · Os1s2 = Os2s3s1s2 +Os1s2s3s2 −Os2s1s3s2s3 ,
where the last equality is obtained by Pieri’s rule for the classical K-theory [27]. As a consequence,

Os2s3 ∗ Ou = q−1
1 q−2

2 q−3
3 q1q2q

2
3T 2(Os2s3 · Os1s2)

= q−1
2 q−1

3 T 2(Os2s3s1s2 +Os1s2s3s2 −Os2s1s3s2s3)

= q−1
2 q−1

3 T (q2q3Os3s2s1 + q2q3Os2s1s3 − q2q3Os3s2s1s3)

= q1q2q3Oid + q3Os1s3s2s1 − q1q2q3Os3 .

Example 3.4. In QK(F`6), for u = s5s3s4s1s2s3s2s1, we have T (Ou) = q1q2q3q4q5Os4s2s3 . Based
on Conjecture 3.1 and the classical Pieri rule, we have

Os3s4s5 ∗ Ou = q−1
1 q−2

2 q−3
3 q−4

4 q−5
5 q1q2q3q4q5T 5(Os3s4s5 · Os4s2s3)

= q−1
2 q−2

3 q−3
4 q−4

5 T 5(Os1s2s3s4s5s3 +Os2s3s4s5s4s3 +Os2s3s4s5s2s3 +Os3s4s5s4s2s3

= q1q2q3q4q5Os3 +Os1s2s3s4s5s3s4s2s3s2s1 +Os1s2s3s4s5s4s1s2s3s2s1 +Os2s3s4s5s3s4s1s2s3s2s1

− q1q2q3q4q5Os4s3 − q1q2q3q4q5Os2s3 − 2Os1s2s3s4s5s3s4s1s2s3s2s1 + q1q2q3q4q5Os4s2s3 .

We can use Young tableaux to express the partitions for Gr(3, 6). For example, the Young tableau
represents partition (3, 2, 0), which corresponds to the Grassmannian type permutation 146235.

By Proposition 3.1, for π∗ : QK(F`6) −→ QK(Gr(3, 6)), we have

O ∗ O = Os3P ∗ O
s5s3s4s1s2s3
P

= π∗(Os3s4s5) ∗ π∗(Ou)

= π∗(Os3s4s5 ∗ Ou)

= π∗(q1q2q3q4q5Os3 +Os1s2s3s4s5s3s4s2s3s2s1 +Os1s2s3s4s5s4s1s2s3s2s1 +Os2s3s4s5s3s4s1s2s3s2s1

− q1q2q3q4q5Os4s3 − q1q2q3q4q5Os2s3 − 2Os1s2s3s4s5s3s4s1s2s3s2s1 + q1q2q3q4q5Os4s2s3)

= q3Os3P +Os1s2s3s4s5s3s4s2s3P +Os1s2s3s4s5s4s1s2s3P +Os2s3s4s5s3s4s1s2s3P

− q3Os4s3P − q3Os2s3P − 2Os1s2s3s4s5s3s4s1s2s3P + q3Os4s2s3P

= q3O +O +O +O − q3O − q3O − 2O + q3O .

Abbreviate the quantum variable of QK(Gr(3, 6)) as q = q3, we have

O ∗ O = qO − qO − qO + qO +O +O −O ,
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which is consistent with the calculation obtained by using the quantum Pieri rule for QK(Gr(3, 6))
in [10]. This can be seen as an evidence of Conjecture 3.1.

We end this section with a question similar to Problem 3.1.

Problem 3.2. For u ∈ Sn, 1 ≤ i < j < n − 1, in QK(F`n), what are the necessary and sufficient
conditions for Osisi+1···sj ∗ Ou = Osisi+1···sj · Ou (in terms of combinatorial information of u)? Is
it consistent with the necessary and sufficient conditions at the quantum cohomology level?
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