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ABSTRACT. We develop a complex differential geometric approach to the theory of higher residues
and primitive forms from the viewpoint of Kodaira-Spencer gauge theory, unifying the semi-infinite
period maps for Calabi-Yau models and Landau-Ginzburg models. We give an explicit perturba-
tive construction of primitive forms with respect to opposite filtrations and primitive elements.
This leads to a concrete algorithm to compute the Taylor expansions of primitive forms as well as
the description of their moduli space for all weighted homogenous cases. As an application, we
show the uniqueness of primitive forms for exceptional unimodular singularities, and illustrate our
perturbative formula by presenting unknown expressions for the primitive form of E12-singularity.
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1. INTRODUCTION

1.1. Motivations. Around early 1980’s, the third author introduced primitive forms [43–46] in his
study of periods as to generalize the elliptic period integral theory to higher dimensions. One
important consequence of a primitive form is the flat structure associated to the universal unfold-
ing of a singularity. Later Dubrovin [18] introduced the notion of Frobenius manifold structure to
axiomatize two-dimensional topological field theories on the sphere. It was soon realized that the
aforementioned flat structure describes precisely the Frobenius manifold structure of topologi-
cal Landau-Ginzburg models. The birth of mirror symmetry explodes the context of singularity
or Landau-Ginzburg theory both in the mathematics and physics literature. As a consequence,
primitive forms not only produce intrinsic structures associated to singularities, but also predict
geometric quantities as periods on Calabi-Yau manifolds, Gromov-Witten type invariants, etc.

The concept of higher residues [43, 45] plays a key role in the theory of primitive forms. Moti-
vated by mirror symmetry, Barannikov and Kontsevich [5] constructed a large class of Frobenius
manifold structures on the formal extended moduli space of complex structures on Calabi-Yau
manifolds. In the Calabi-Yau case, the structures of higher residues were formulated by Baran-
nikov as the notion of variation of semi-infinite Hodge structures [2,4], within which the semi-infinite
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period map plays the role of a primitive form. Related concepts on semi-infinite Hodge struc-
tures are further interpreted by Givental as the symplectic geometry of Langrangian cone in a
loop space formalism [23]. In [3], Barannikov used oscillating integrals to obtain the variation
of semi-infinite Hodge structures for the singularity describing the mirror of projective spaces,
and proved the corresponding mirror symmetry. This construction is generalized by Sabbah [40]
and Douai-Sabbah [16, 17] to wider examples of Laurent polynomials. We refer to [27] for an
introduction to this subject.

The Barannikov-Kontsevich construction is closely modeled on the Kodaira-Spencer gauge
theory introduced by the physicists Bershadsky, Cecotti, Ooguri and Vafa [6] (which we will
call BCOV theory). The systematic mathematical treatment of BCOV theory has been developed
recently by Costello and the second author [14] based on the effective quantization of Givental’s
symplectic formalism. The precise relation between BCOV theory and the variation of semi-
infinite Hodge structures is explained in [35]. See [34] also for a review.

The BCOV theory is a gauge theory of polyvector fields on Calabi-Yau manifolds, describing
the closed string field theory of the B-twisted topological string. It has a natural extension [36] to
Landau-Ginzburg model for the pair (X, f ), where X is a Stein manifold and f is a holomorphic
function on X with finite critical set. The gauge field is given by PVc(X)[[t]], where PVc(X) is the
space of smooth polyvector fields with compact support and t is a formal variable. The action
functional is constructed with the help of the trace map (See section 2.3)

Tr : PVc(X)[[t]]→ C[[t]]

by integrating out the polyvector fields with respect to a choice of holomorphic volume form.
Surprisingly, this simple integration map lifts the third author’s higher residue map at the cochain
level (Section 2.3). In particular, the ordinary residue is lifted at the cochain level as the leading
order of the trace map (Proposition 2.5). It is then an extremely intriguing question whether there
is a deep connection between the theory of primitive forms and BCOV theory. A related work
from string theoretical viewpoint was provided by Losev [37].

The initial purpose of the current paper is to reveal this connection and develop a complex
differential geometric approach to the theory of higher residues and primitive forms from the
viewpoint of BCOV theory. It turns out that such viewpoint leads to an algebraic perturbative
formula of primitive forms, unifying the well-known results on ADE and simple elliptic singu-
larities. In particular, this allows us to compute the potential function of the associated Frobenius
manifold structure up to any finite order for arbitrary weighted homogeneous singularities. This
is applied in [32] to prove the mirror symmetry for exceptional unimodular singularities.

Another Hodge theoretical aspect is called the tt∗-geometry discovered by Cecotti and Vafa
[10] , whose integrability structure was studied by Dubrovin [19]. The algebraic formulation of
tt∗-geometry was due to Hertling [28], and recently Fan [21] presented an approach through har-
monic analysis in the spirit of N = 2 supersymmetry [9]. One essential aspect of tt∗-geometry is
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about the real structure, which is naturally built into the smooth forms and their Hodge theoret-
ical aspects. This is another motivation for us to develop the theory of higher residues inside the
smooth category.

1.2. Higher residue and primitive forms. To explain primitive forms, we start with a pair (X, f ),
where X ⊂ Cn is a Stein domain, and f : X → C is a holomorphic function with finite critical set.
With respect to the choice of a nonwhere vanishing holomorphic volume form ΩX on X, we can
identify the space PV(X) of smooth polyvector fields with the space A(X) of smooth complex
differential forms on X, by using contraction operator ` with ΩX. This gives an isomorphism of
cochain complexes (Definition 2.7)

(PV(X)((t)), Q f )→ (A(X)((t)), d +
df
t
∧),

where Q f is the coboundary operator on PV(X)((t)) that is defined by using d + df
t ∧ together

with the isomorphism PV(X)((t)) ∼= A(X)((t)) of vector spaces. Let PVc(X) ⊂ PV(X) be the
subspace of smooth polyvector fields with compact support. It is easy to observe that the natural
embedding of complexes

ι : (PVc(X)[[t]], Q f ) ↪→ (PV(X)[[t]], Q f )

is in fact a quasi-isomorphism. Therefore, we obtain a canonical isomorphism

H f ,Ω
(0) := H∗(PV(X)[[t]], Q f )

ι−1

→ H∗(PVc(X)[[t]], Q f ).

Combining this with the trace map defined by

Tr : PVc(X)→ C; α 7→ Tr(α) :=
∫

X
(α ` ΩX) ∧ΩX ,

we obtain a map R̂es f as the composition of Tr and the inverse of ι in the following diagram

H f ,Ω
(0) := H∗(PV(X)[[t]], Q f )

ι−1
//

R̂es
f

**

H∗(PVc(X)[[t]], Q f )

Tr
��

C[[t]]

One of our main observations is that R̂es
f

realizes the original higher residue map in our smooth
set-up of polyvector fields. More precisely, every holomorphic function g on X represents a
cohomology class [g] inH f ,Ω

(0) . If we write

R̂es
f
([g]) = ∑

k≥0
R̂es(k)([g])t

k,

then R̂es(0)(g) recognizes the ordinary residue (Proposition 2.5), and {R̂es(k)}k constitutes the
tower of higher residues. The higher residue pairing

K f
Ω(-, -) : H f ,Ω

(0) ×H
f ,Ω
(0) → C[[t]]
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is constructed in a similar fashion such that R̂es(-) = K f
Ω (-, [1]).

Primitive forms are defined with respect to the universal folding F of f parametrizes by S.
We assume that o ∈ S is the reference point such that F|o = f , and fix a family of holomorphic
volume form Ω. The cohomology H f ,Ω

(0) extends to an OS[[t]]-module HF,Ω
(0) on S, and the higher

residue pairing extends to

KF
Ω(-, -) : HF,Ω

(0) ×H
F,Ω
(0) → OS[[t]]

with a compatible Gauss-Manin connection

∇Ω : HF,Ω
(0) → Ω1

S ⊗ t−1HF,Ω
(0)

The basic properties of the triple (HF,Ω
(0) ,KF

Ω(-, -),∇Ω) are summarized to define a variation of

semi-infinite Hodge structures (see section 3.3). A primitive form is a section ζ ∈ Γ(S,HF,Ω
(0) ) that

satisfies the following four properties: Primitivity, Orthogonality, Holonomicity and Homogeneity
(see Definition 3.21). Such definition is equivalent to the original description of primitive forms
(see Theorem 3.27).

Since we are working with polyvector fields, we use the superscript notation to distinguish
from the original notation of H f , K f , etc. We have made a choice of the family of holomor-
phic volume form Ω. However, different choices are essentially equivalent (see section 3.5). The
combined volume form ζΩ represents a primitive form in the original approach [46]. There-
fore it is equivalent to work inside differential forms as in [46]. We have made extra efforts to
present in the current form in order to compare with BCOV theory on compact Calabi-Yau man-
ifolds [4, 14, 35]. This motivates the perturbative formula for primitive forms (Theorem 5.16) as
a unification of Calabi-Yau and Laudan-Ginzburg models, and it sheds lights on the Landau-
Ginzburg/Calabi-Yau correspondence in the B-model.

1.3. Construction of primitive forms and applications. In [46], the third author introduced the
notion of good sections, which we will call good opposite filtrations, to produce analytic primitive
forms by solving a version of Riemann-Hilbert-Birkhoff problem. It leads to M. Saito’s general
solution on the existence of primitive forms [50] . This rather delicate construction provides a
complete description of the space of primitive forms locally, but on the other hand makes the
computation of primitive forms very difficult in general. Explicit expressions of primitive forms
were only known, when the holomorphic function f is given by either (1) two classes of weighted
homogeneous polynomials (namely ADE-singularities and simple elliptic singularities) [46] or
(2) a few Laurent polynomials [3, 16, 17, 54]. It has also been known very recently, when f is an
affine cusp polynomial [30, 52].

In the present paper, we develop new techniques to describe primitive forms locally with
respect to good opposite filtrations. The basic idea is to apply Barannikov’s construction of
semi-infinite period map for compact Calabi-Yaus to the Landau-Ginzburg case once we have
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completely similar settings via polyvector fields. In the formal neighborhood of o ∈ S, this leads
to explicit expressions for the primitive forms which we now briefly describe. Let

H f ,Ω := H∗(PV(X)((t)), Q f )

and HF,Ω be the corresponding extension to the universal unfolding. The vector space H f ,Ω is
equipped with a symplectic structure, with H f ,Ω

(0) being an isotropic linear subspace. A good
opposite filtration L is given by a splitting

H f ,Ω = H f ,Ω
(0) ⊕L

such that L is (1) isotropic, (2) preserved by multiplying by t−1 and (3) a version of C∗-invariance
(Definition 4.12). We will be working in the formal neighborhood of o ∈ S, and there exists
a similar notion of formal primitive forms (Definition 4.6). Let ȞF,Ω (ȞF,Ω

(0) ) denote the pull-

back of HF,Ω (HF,Ω
(0) ) to the formal neighborhood. The advantage of formal setting is that the

Gauss-Manin connection∇Ω on ȞF,Ω is easily trivialized via the transformation e( f−F)/t (Lemma
4.7). Let LR ⊂ ȞF,Ω be the extension of L with respect to ∇Ω (see Definition 4.9 for precise
descriptions). Then there is an induced splitting

ȞF,Ω = ȞF,Ω
(0) ⊕LR

Our main result is the following

Theorem 1.1 (see Theorem 4.15 and Theorem 4.17).

(1) There is a bijection between analytic primitive forms in the germ of the universal unfolding and
formal primitive forms, both of which are in one-to-one correspondence with pairs (L,ζ0), where
L ⊂ H f ,Ω is a good opposite filtration and ζ0 ∈ H f ,Ω

(0) is a primitive element with respect to L.
(2) The Taylor series expansion of the primitive form corresponding to (L,ζ0) is given by the projec-

tion of the formal section e
f−F

t ζ0 of ȞF,Ω = ȞF,Ω
(0) ⊕LR to ȞF,Ω

(0) .

The above theorem unifies the semi-infinite period maps for Calabi-Yau models and Landau-
Ginzburg models. It has particularly nice applications when f is a weighted homogenous poly-
nomial (of weight degree 1). In this case, we always take the standard fixed family of volume
form Ω = dz1 ∧ · · · ∧ dzn, where (z1, · · · , zn) denotes the coordinates of X = Cn. Take a set
{φi}µi=1 of weighted homogeneous polynomials that represent a basis of the Jacobian ring, with
the order of their weight degrees ascending: degφ1 ≤ degφ2 ≤ · · · ≤ degφµ. Then we can com-
pletely determine the space of good opposite filtrations and primitive elements with elementary
methods. Denote r(i, j) := degφi − degφ j and set

D := ]{(i, j) | r(i, j) ∈ Z>0, i + j < µ + 1}+ ]{(i, j) | r(i, j) ∈ Zodd
>0 , i + j = µ + 1}.

Applying the first part of Theorem 1.1 to the weighted homogeneous polynomial f , we obtain
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Theorem 1.2 (Theorem 5.14). The moduli space of primitives forms,

M := {primitive forms ofHF,Ω
(0) }/ ∼ ,

is parametrized by CD. Here we say two primitive forms ζ1,ζ2 to be equivalent, denoted as ζ1 ∼ ζ2, if
ζ1 = cζ2 in the germ of the universal unfolding, for some nonzero constant c ∈ C∗.

There are related statements for Brieskorn lattices [26] (see also chapter 10 of [27]). As a di-
rect consequence of the theorem, there exists a unique primitive form (up to a scalar) for ADE-
singularities [46] and exceptional unimodular singularities (Corollary 5.15).

Applying the second part of Theorem 1.1 to f , we obtain a concrete algorithm to compute the
Taylor series expansions of primitive forms up to an arbitrary finite order. The precise formula is
explained in Theorem 5.16. Actually, such perturbative formula unifies the following known re-
sults [46]. For ADE-singularities, the unique primitive form is given by ζ = 1; for simple elliptic
singularities, there is a one-parameter family of primitive forms (up to a nonzero constant scalar),
given by the period integrals on the corresponding elliptic curves. Beyond this, our perturbative
formula also give precise expressions of primitive forms for other cases up to a finite order. As
an example, we consider f = x3 + y7, which is an exceptional unimodular singularity of type
E12. The primitive forms for it were unknown, due to the difficulty of the generally expected
phenomenon of mixing between deformation parameters of positive and negative degrees. As
an application of Theorem 5.16, the unique primitive ζ has the leading expression

ζ = 1+
4

3 · 72 u11u2
12−

64
3 · 74 u2

11u4
12−

76
32 · 74 u10u5

12 +(
1
72 u3

12−
101

5 · 74 u11u5
12)x− 53u6

12
32 · 74 x2 mod m7,

where m denotes the maximal ideal of the reference point 0 ∈ S, and u10, u11, u12 are part of the
coordinates of S appearing in the coefficients of the deformations by φ10 = xy3, φ11 = xy4 and
φ12 = xy5, respectively. It is clear from this result that the mixing phenomenon mentioned above
appears in a nontrivial way, and non-trivial elements in the Jacobian ring are also generated
along deformation, unlike the ADE and simple elliptic singularities. This strongly suggests that
the primitive form not only favors for special flat coordinates on the deformation space, but also
for the fibration itself. All these cases are discussed in detail in the last section of examples.

Our perturbative formula for primitive forms are extremely useful for applications in mirror
symmetry. The theory of primitive forms presents the mathematical context of Landau-Ginzburg
B-model in physics. The mirror mathematical theory of Landau-Ginzburg A-model is established
by Fan, Jarvis and Ruan [20] following Witten’s proposal [57], which is nowadays popularized as
the FJRW-theory. As a direct application of our method, it is proved in [32] that Landau-Ginzburg
B-models for exceptional unimodular singularities are equivalent to the mirror FJRW-theory. Our
current construction is mainly focused on the local theory, and it would be extremely interesting
to understand the global behavior of primitive forms. Related works on global mirror symmetry
along this line have appeared in [11, 12, 29, 39].



8 CHANGZHENG LI, SI LI, AND KYOJI SAITO

The present paper is organized as follows: Section 2 is devoted to the basic set-up of polyvec-
tor fields. We formulate the complex differential geometric description of higher residues via the
trace map on compactly supported polyvector fields. In section 3, we explain the variation of
semi-infinite Hodge structures associated with our model and define the corresponding primi-
tive forms. In section 4, we describe the general constructions of primitive forms in the formal
neighborhood of the universal unfolding and explain our perturbative formula. In section 5, we
describe the moduli space of primitive forms for weighted homogeneous polynomials, and pro-
vide a concrete algorithm to compute the Taylor series expansions of the primitive form. Finally
in section 6, we apply our method to explicit examples.
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2. POLYVECTOR FIELDS

Throughout the present paper, we will assume X to be a Stein domain in Cn, and assume
f : X → C to be a holomorphic function with finite critical points Crit( f ). We will fix a nowhere
vanishing holomorphic volume form ΩX on X once and for all. As we will see in section 3.5
(Proposition 3.26), the choice of ΩX is not essential.

As a notation convention, we will always denote by [-, -] the graded-commutator. That is, for
operators A, B of degree |A|, |B|, the bracket is given by

[A, B] := AB− (−1)|A|·|B|BA.(2.1)

2.1. Compactly supported polyvector fields. Let TX denote the holomorphic tangent bundle of
X, and A0, j

c (X,∧iTX) denote the space of compactly supported smooth (0, j)-forms valued in
∧iTX. We consider the space of compactly supported smooth polyvector fields on X:

PVc(X) =
⊕

0≤i, j≤n

PVi, j
c (X) with PVi, j

c (X) := A0, j
c (X,∧iTX).
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Clearly, PVc(X) is a bi-graded C∞(X)-module. As we will see below, the space PVc(X) is a
double complex: the total degree ofα ∈ PVi, j

c (X) is defined1 to be |α| := j− i. There is a natural
wedge product structure (see formula (2.4)) on polyvector fields, which makes PVc(X) a graded-
commutative algebra.

Using the contraction ` with ΩX, we obtain an isomorphism of C∞(X)-modules between
compactly supported polyvector fields and compactly supported differential forms

ΓΩX : PVi, j
c (X)

`ΩX∼= An−i, j
c (X).

As a consequence, every operator P on Ac(X) := A∗,∗c (X) induces an operator PΩX on PVc(X):

PΩX (α) := Γ−1
ΩX

(
P(ΓΩX (α))

)
, ∀α ∈ PVc(X).

We will simply denote PΩX as PΩ. Furthermore, if the induced operator PΩX is independent
of choices of ΩX, we simply denote it as P by abuse of notation. For instance, the differential
operators ∂̄, ∂ on differential forms, respectively, induce operators on polyvector fields

∂̄ΩX : PV∗,∗c (X)→ PV∗,∗+1
c (X) and ∂ΩX : PV∗,∗c (X)→ PV∗−1,∗

c (X).

The operator ∂̄ΩX is simply denoted as ∂̄, while the operator ∂ΩX that depends on ΩX is denoted
by ∂Ω. In other words,

(∂̄α) ` ΩX = ∂̄(α ` ΩX), and (∂Ωα) ` ΩX = ∂(α ` ΩX)

for anyα ∈ PVc(X). Both ∂̄ and ∂Ω are of cohomology degree 1.

The operator ∂Ω further defines a bracket

{-, -} : PVc(X)× PVc(X)→ PVc(X),

{α,β} := ∂Ω (α ∧β)− (∂Ωα) ∧β− (−1)|α|α ∧ ∂Ωβ(2.2)

for α ∈ PVi, j
c (X) and β ∈ PVk,l

c (X). Here ∧ is the wedge product (see formula (2.4)). Unless
otherwise stated, we will simply denote αβ := α ∧ β. In the special case when the polyvector
fieldα = g is a function, one can easily check that

(2.3) {g,β} ` ΩX = ∂g ∧ (β ` ΩX).

The bracket {-, -} corresponds to the Schouten-Nijenhuis bracket (up to a sign), which is inde-
pendent of the choice of ΩX.

We also consider the larger space

PV(X) =
⊕

0≤i, j≤n

PVi, j(X)

1The convention for the degree ofα is j + i in [14].
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of smooth polyvector fields (not necessarily compactly supported), which is naturally identified
with the smooth differential forms by extending ΓΩX above. The operators ∂̄, ∂Ω and {-, -} are all
defined on PV(X).

Remark 2.1. The triple
{
{-, -},∧, ∂Ω

}
make PV(X) a Batalin-Vilkovisky algebra, which is used in

[5, 7, 55, 56] to prove the Formality Theorem for polyvector fields in Calabi-Yau geometry.

We describe the above constructions in coordinates z = (z1, · · · , zn) of Cn and fix our conven-
tions. We will write

ΩX =
dz1 ∧ dz2 ∧ · · · ∧ dzn

λ(z)
where λ : X → C is a nowhere vanishing holomorphic function on X. For an ordered subset
I = {a1, a2, · · · , ai} of {1, 2, · · · , n} with |I| = i, we use the following notations:

dz̄I := dz̄a1 ∧ · · · ∧ dz̄ai , ∂I :=
∂

∂za1

∧ ∂

∂za2

∧ · · · ∧ ∂

∂zai

.

In particular, we will use ∂k for the polyvector field ∂

∂zk
∈ PV1,0(X) in order to distinguish it from

the partial derivative ∂zk := ∂

∂zk
on C∞(X). We will occasionally use ∂

∂zk
when its meaning is

self-evident.

Forα ∈ PVi, j(X) and β ∈ PVk,l(X),

α = ∑
|I|=i,|J|= j

α I
J dz̄J ⊗ ∂I , β = ∑

|K|=k,|L|=l
βK

L dz̄L ⊗ ∂K ,

whereα I
J , β

K
L ∈ C∞(X), the wedge product is given by

(2.4) α ∧β := ∑
I,J,K,L

(−1)ilα I
Jβ

K
L (dz̄J ∧ dz̄L)⊗ (∂I ∧ ∂K),

which satisfies the graded-commutativity

α ∧β = (−1)|α|·|β|β ∧α.

We will use ∂

∂∂r
for the derivation with respect to the polyvector field ∂r:

∂

∂∂r

(
α I

J dz̄J ⊗ ∂I

)
:=

(−1)|J|+m−1α I
J dz̄J ⊗ ∂a1 · · · ∂am−1 ∂am+1 · · · ∂ai , if am = r for some m,

0, otherwise.

These operators are of degree 1, satisfying the graded-commutativity relations

∂

∂∂k

∂

∂∂l
= − ∂

∂∂l

∂

∂∂k
, ∀1 ≤ k, l ≤ n.

Under the above conventions, we have

∂̄α = ∑
I,J
(∂̄α I

J) ∧ dz̄J ⊗ ∂I , ∂Ωα = ∑
I,J

n

∑
r=1
λ∂zr

(α I
J

λ

) ∂

∂∂r
(dz̄J ⊗ ∂I),
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and

{α,β} =
n

∑
r=1

(
∂

∂∂r
α
)
∧
(

∑
K,L

(∂zrβ
K
L )dz̄L ⊗ ∂K

)
+ (−1)|α|

n

∑
r=1

(
∑
I,J
(∂zrα

I
J)dz̄J ⊗ ∂I

)
∧ ∂

∂∂r
β.

2.2. Cohomology of polyvector fields. In this subsection, we will study the cohomology of
(compactly supported) polyvector fields with respect to the following coboundary operator

∂̄ f := ∂̄ + { f , -} ,

acting on PV(X) and preserving PVc(X). It is easy to see that ∂̄2
f = 0 and ∂̄ f g = 0, ∀g ∈ Γ(X,OX).

Let Jac( f ) := Γ(X,OX)/(∂z1 f , · · · , ∂zn f ), which is called the Jacobian ring or Chiral ring.

Lemma 2.2. Hk(PV(X), ∂̄ f ) vanishes unless k = 0. Furthermore, there is a natural isomorphism

Jac( f )
∼=→ H0(PV(X), ∂̄ f ) sending [g] in Jac( f ), g ∈ Γ(X,OX), to the cohomology class [g].

Proof. PV(X) is a double complex with horizontal operator { f , -} and vertical operator ∂̄. We
consider the spectral sequence associated to the descending filtration

F k PV(X) =
⊕

i≤n−k

PVi,∗(X)

for k ∈ Z. Since X is Stein, the E1-term is given by holomorphic sections H∗(PV(X), ∂̄) =⊕
k H0(X,∧kTX), with the differential { f , -}. Since Crit( f ) is finite, ∂z1 f , · · · , ∂zn f forms a reg-

ular sequence on X. Therefore the cohomology of the holomorphic Koszul complex

0
{ f ,-}−→ H0(X,∧nTX)

{ f ,-}−→ H0(X,∧n−1TX)
{ f ,-}−→ · · · { f ,-}−→ H0(X,OX)

{ f ,-}−→ 0,

which is E2, is concentrated at the top term H0(X,OX)

Im
(
{ f ,-}:H0(X,TX)→H0(X,OX)

) = Jac( f ). Clearly, the

spectral sequence degenerates at E2-stage, and the statement follows. �

In order to represent cohomology classes by compactly supported polyvector fields, we intro-
duce some operators. Let

‖df ‖2 :=
n

∑
k=1
|∂zk f |2 ,

and we consider the following operator

V f =
n

∑
i=1

∂zi f
‖df ‖2 ∂i∧ : PV∗,∗(X \Crit( f )) −→ PV∗+1,∗(X \Crit( f )) .

Let ρ be a smooth cut-off function on X, such that ρ|U1 ≡ 1 and ρ|X\U2
≡ 0 for some relatively

compact open neighborhoods U1 ⊂ U1 ⊂ U2 of Crit( f ) in X.

The operators ∂̄ and V f are of degree 1 and −1 respectively (where defined), and [∂̄, V f ] =

∂̄V f + V f ∂̄ is of degree 0. We define

Tρ : PV(X)→ PVc(X), and Rρ : PV(X)→ PV(X)



12 CHANGZHENG LI, SI LI, AND KYOJI SAITO

by

Tρ(α) := ρα + (∂̄ρ)V f
1

1 + [∂̄, V f ]
(α), Rρ(α) := (1− ρ)V f

1
1 + [∂̄, V f ]

(α), α ∈ PV(X).

Here as an operator
1

1 + [∂̄, V f ]
:=

∞
∑
k=0

(−1)k[∂̄, V f ]
k,

which is well-defined since [∂̄, V f ]
k(α) = 0 for any k > n.

Lemma 2.3. [∂̄ f , Rρ] = 1− Tρ as operators on PV(X).

Proof. It is easy to see that

[{ f , -}, V f ] = 1 on PV(X \Crit( f )).

Moreover,
[P, [∂̄, V f ]] = 0

for P being { f , -}, ∂̄ or V f . Therefore, where defined,

[∂̄ f , Rρ] = [∂̄ f , 1− ρ]V f
1

1 + [∂̄, V f ]
+ (1− ρ)[∂̄ f , V f ]

1
1 + [∂̄, V f ]

= −(∂̄ρ)V f
1

1 +
[
∂̄, V f

] + (1− ρ)

= 1− Tρ.

�

Corollary 2.4. The embedding
(
PVc(X), ∂̄ f

)
↪→
(
PV(X), ∂̄ f

)
is a quasi-isomorphism.

Proof. This follows from Lemma 2.3 that H∗(PV(X)/ PVc(X), ∂̄ f ) ≡ 0. �

We will let ι be the natural embedding

ι : PVc(X) ↪→ PV(X).

Corollary 2.4 and Lemma 2.2 lead to a canonical isomorphism

ι : H∗
(
PVc(X), ∂̄ f

) ∼=−→ Jac( f ),

which we still denote by ι. By Lemma 2.3, a representative of ι−1([g]) for [g] ∈ Jac( f ), where
g ∈ Γ(X,OX), is given by the compactly supported polyvector field Tρ(g). In particular, the class
[Tρ(g)] represented by Tρ(g) depends only on the class [g] ∈ Jac( f ), not on the choice of the
coordinates or the cut-off function ρ.

For compactly supported polyvector fields, we can define the trace map

Tr : PVc(X)→ C, Tr(α) :=
∫

X
(α ` ΩX) ∧ΩX .
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This induces a non-degenerate pairing 〈-, -〉 : PVc(X)⊗ PVc(X)→ C defined by

α ⊗β 7→ 〈α,β〉 := Tr (αβ) .

For anyα ∈ PVi, j
c (X) and β ∈ PVk,l

c (X), it is easy to see that

〈∂̄α,β〉 = −(−1)|α|〈α, ∂̄β〉 and 〈∂Ωα,β〉 = (−1)|α|〈α, ∂Ωβ〉.(2.5)

Furthermore, we have

Tr(∂̄α) = 0 and Tr({ f ,α}) = 0,

which imply that the trace map is well defined on the cohomology

Tr : H∗(PVc(X), ∂̄ f )→ C.

The above pairing descends to a pairing 〈-, -〉 on the cohomology which will be non-degenerate
as well (Proposition 2.5).

The trace map is closely related to the residue as follows. Let {V1, · · · , Vn} be a OX-basis of
holomorphic vector fields on X such that (Vn∧Vn−1∧ · · · ∧V1) ` ΩX ≡ 1. Then V1( f ), · · · , Vn( f )
form a regular sequence on X, and we have the concept of residue map (see e.g. [25], [24] for de-
tails)

Res : Jac( f )→ C, g→ Res(g) = ∑
x∈Crit( f )

Resx
gΩX

V1( f )V2( f ) · · ·Vn( f )
.

which is independent of the choice of {V1, · · · , Vn} (but depends on the choice of ΩX). In coor-
dinates z of Cn, we have

Res(g) = ∑
x∈Crit( f )

Resx
g(z)dz1 ∧ dz2 ∧ · · · ∧ dzn

λ2(∂z1 f ) · · · (∂zn f )

for ΩX = dz1∧dz2∧···∧dzn
λ(z) .

One of the key observations is that the trace map is compatible with the residue map in the
following sense.

Proposition 2.5. There exists a constant Cn, depending only on n = dim X, such that the following
diagram commutes

Jac( f )

Cn Res
''

ι−1
// H∗(PVc(X), ∂̄ f )

Tr
��
C

Proof. The statement follows from similar calculations as in [24] page 654. The proof is given
below, while our reader may skip the details.

Let Crit( f ) = {x1, · · · , xr}. For 0 < ε << 1, we denote by Bε a closed ball of radiusε contained
in X, Sε being the boundary of Bε. We chooseε1, · · · ,εr and small disjoint balls B2εi such that each
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Int(Bεi) contains precisely xi in Crit( f ), hence Crit( f ) ⊂ ⋃r
i=1 Int(Bεi). Take a smooth cut-off

function ρ such that

ρ|⋃r
i=1 Bεi

≡ 1, ρ|X\⋃r
i=1 B2εi

≡ 0.

Let X′ =
⋃r

i=1 Int(B2εi)−
⋃r

i=1 Bεi . For 1 ≤ k ≤ n, we denote fk := ∂zk f and hk := f̄k
‖df ‖2 , where

we recall ‖df ‖2 =
n
∑

j=1
| f j|2.

The operator Tρ gives a realization of ι−1. Let g be a holomorphic function on X representing
an element of Jac( f ). Let

A j := V f [∂̄, V f ]
j(g) ∈ PV j+1, j(X).

Claim: ∂̄An−1 = 0 and

An−1 = C′ng
n

∑
i=1

(−1)i−1 f̄i

‖df ‖2n d f̄1 ∧ · · · ∧ d̂ f̄i ∧ · · · ∧ d f̄n ⊗ (∂1 · · · ∂n)

for some nonzero constant C′n depending only on n.

Let us assume the Claim first, and let ΩX′ := ΩX|X′ . Then

Tr(ι−1(g)) = Tr(Tρg) = Tr((1− ρ)g + (∂̄ρ)
n

∑
k=1

(−1)k Ak)

= (−1)n−1
∫

X

(
((∂̄ρ)An−1) ` ΩX

)
∧ΩX = (−1)n−1

∫
X′

(
((∂̄ρ)An−1) ` ΩX′

)
∧ΩX′

= (−1)n−1
∫

X′
d
(
(ρAn−1 ` ΩX′) ∧ΩX′

)
= (−1)n−1

∫
∂X′

(ρAn−1 ` ΩX′) ∧ΩX′

= (−1)n
r

∑
j=1

∮
Sε j

(An−1 ` ΩX′) ∧ΩX′ .

Hence, there exists nonzero constant Cn depending only on n such that

Tr(Tρg) = Cn

r

∑
j=1

∮
Sε j

1
λ2 g

n

∑
i=1

(−1)i−1 f̄i

‖df ‖2n d f̄1 ∧ · · · d̂ f̄i ∧ · · · ∧ d f̄n ∧ dz1 · · · ∧ dzn

(∗)
= Cn ∑

x j

Resx j

g
(∂z1 f ) · · · (∂zn f )

· 1
λ2 dz1 ∧ · · · ∧ dzn

= Cn Res(g).

The equality (∗) follows from the Residue Theorem (see e.g. section 5.1 of [24]).

It remains to show our claim. We have

V f = ∑
i

hi∂i,
[
∂̄, V f

]k
(g) =

(
∑

i
∂̄hi∂i

)k

g
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where ∂̄hi =
∂̄ f̄i
‖df ‖2 − f̄i

‖df ‖4 ∂̄‖df ‖2. Using

∂̄‖df ‖2 ∧ ∂̄‖df ‖2 = 0 and

(
∑

i
hi∂i

)(
∑

i

f̄i

‖df ‖4 ∂̄‖df ‖2
∂i

)
= − ∂̄‖df ‖2

‖df ‖2

(
∑

i
hi∂i

)2

= 0,

it follows easily that

An−1 =

(
∑

i
hi∂i

)(
∑

i

∂̄ f̄i

‖df ‖2 ∂i

)n−1

g− (n− 1)

(
∑

i
hi∂i

)(
∑

i

∂̄ f̄i

‖df ‖2 ∂i

)n−2(
∑

i

f̄i

‖df ‖4 ∂̄‖df ‖2
∂i

)
g

=

(
∑

i
hi∂i

)(
∑

i

∂̄ f̄i

‖df ‖2 ∂i

)n−1

g

= (−1)n(n−1)/2(n− 1)!g
n

∑
i=1

(−1)i−1 f̄i

‖df ‖2n d f̄1 ∧ · · · d̂ f̄i ∧ · · · ∧ d f̄n ⊗ (∂1 · · · ∂n).

The equation ∂̄An−1 = 0 follows from the above formula. This proves the Claim. �

2.3. Polyvector fields with a descendant variable. Following [43, 45], we consider the vector
space of PV(X) (resp. PVc(X)) valued Laurent series in t:

PV(X)((t)) = PV(X)[[t]][t−1] (resp. PVc(X)((t)) = PVc(X)[[t]][t−1]).

Here t is a formal variable of cohomology degree zero, called descendant variable.

Remark 2.6. We are following the notation t in [13,14] for the descendant variable, which is also denoted
by various notations like δ−1 [43–46], h̄ [3, 4], u [31], z [23], etc.

Both PV(X)((t)) and PVc(X)((t)) are complexes with respect to the following twisted cobound-
ary operator

Q f := ∂̄ f + t∂Ω.(2.6)

The complex PV(X)((t)) has a natural decreasing filtration F • PV(X)((t)) preserved by Q f ,
which is defined by

F k(PV(X)((t))) := tk PV(X)[[t]].(2.7)

On the other hand, the space A(X)((t)) (resp. Ac(X)((t)) of A(X) (resp. Ac(X)) valued
Laurent series is a complex with respect to either of the following twisted coboundary operator:

d+f := d +
df
t
∧, d−f := td + (df ) ∧ .(2.8)

Proposition-Definition 2.7. There are two isomorphisms Γ̂±ΩX
of filtered complexes,

Γ̂+ΩX
: (PV(X)((t)), Q f )→ (A(X)((t)), d+f ), Γ̂−ΩX

: (PV(X)((t)), Q f )
∼=→ (A(X)((t)), d−f ),
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which, for tkα ∈ tk PVi, j(X), are respectively defined by

Γ̂+ΩX
(tkα) := tk+i−1 (α ` ΩX) ∈ tk+i−1An−i, j(X) and Γ̂−ΩX

(tkα) := tk+ j (α ` ΩX) ∈ tk+ jAn−i, j(X).

Here the filtered complex structure of (A(X)((t)), d±) are respectively given by

Γ̂+ΩX
(tk PV(X)[[t]]) = ∏

m∈Z

⊕
i≥m+k, j∈Z

Ai, j(X)⊗ tn−m−1,(2.9)

Γ̂−ΩX
(tk PV(X)[[t]]) = ∏

m∈Z

⊕
j≤m−k,i∈Z

Ai, j(X)⊗ tm,(2.10)

Proof. Clearly, Γ̂+ΩX
and Γ−ΩX

are both isomorphisms of C∞(X)((t))-modules. Furthermore, it is
easy to check Γ̂+ΩX

◦ Q f = d+f ◦ Γ̂
+
ΩX

and Γ̂−ΩX
◦ Q f = d−f ◦ Γ̂

−
ΩX

. Therefore Γ̂±ΩX
are isomorphisms

of complexes. It is direct to check that Γ̂±ΩX
(F • PV(X)((t))) makes (A(X)((t)), d±f ) a filtered-

complex as desired. �

We remark that the filtration F • PV(X)((t)) plays the role of the Hodge filtration under the
isomorphism Γ̂+ΩX

. The restriction of Γ̂−ΩX
to the holomorphic data Γ(X,∧∗TX)[[t]] gives the same

filtration Γ̂−ΩX

(
tkΓ(X,∧∗TX)[[t]]

)
= tkΩ∗X[[t]] as in [46]. The coboundary operator d−f = td+(df )∧

was introduced by the third author in [43, 45]. As we will see in Proposition-Definition 2.10, Γ̂−ΩX

provides a precise identification of the filtrations of cohomology between our approach of using
polyvector fields and the original setting up via differential forms. However, we have chosen to
work with polyvector fields, Q f and Γ̂+ΩX

in order to compare with the compact Calabi-Yau man-
ifolds [14] and illustrate aspects of mirror symmetry. The variable t is related to the gravitational
descendant in physics, mirror to the descendant variable in Gromov-Witten theory. The complex
(PV(X)[[t]], Q f ) realizes a natural deformation of (PV(X), ∂̄ f ), capturing the central aspects of
the non-commutative Hodge structures [31].

2.3.1. Cohomology of polyvector fields with descendants.

Definition 2.8. We define the following vector spacesH f ,Ω
(0) ,H f ,Ω associated to f

H f ,Ω
(0) :=

Γ(X,OX)[[t]]
Im
(
Q f : Γ(X, TX)[[t]]→ Γ(X,OX)[[t]]

) , H f ,Ω := H f ,Ω
(0) ⊗C[[t]] C((t)).

where Γ(X, TX) is the space of holomorphic vector fields on X. There is a canonical isomorphism

H f ,Ω
(0) /tH f ,Ω

(0)
∼= Jac( f ).

Proposition 2.9. There are canonical isomorphisms

H f ,Ω
(0)

∼=−→ H∗(PV(X)[[t]], Q f ) and H f ,Ω ∼=−→ H∗(PV(X)((t)), Q f ),

both defined by [α] 7→ [α], where α ∈ Γ(X,OX)[[t]] represents a class on both sides of the first isomor-
phism, and similarly for the second isomorphism.
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Proof. This is essentially an application of the spectral sequence associated to the filtration (2.7).
We present the details here. Denote Ak =

⊕
j−i=k PVi, j(X). Since Q f (Γ(X,OX)[[t]]) = 0, we have

a well-defined morphismϕ of abelian groups,

ϕ : Γ(X,OX)[[t]] −→ H0(PV(X)[[t]], Q f ) =
Ker(Q f : A0[[t]]→ A1[[t]])
Im(Q f : A−1[[t]]→ A0[[t]])

,

given byα 7→ [α]. Let ∑
∞
m=0 amtm ∈ Ker(Q f : A0[[t]]→ A1[[t]]) and a−1 := 0. We have

∞
∑

m=0
(∂̄ f am + ∂Ωam−1)tm = 0.(2.11)

Since [a0] ∈ H0(PV(X), ∂̄ f ), by Lemma 2.2 there exist b0 ∈ Γ(X,OX) and c0 ∈ A−1 such that
a0 = b0 + ∂̄ f c0. Using (2.11) and Lemma 2.2, we can inductively define sequences b0, b1, · · · of
holomorphic functions on X and sequences c0, c1, · · · of elements in A−1 such that

∞
∑

m=0
amtm =

∞
∑

m=0
bmtm + Q f (

∞
∑

m=0
cmtm).

Thereforeϕ is surjective.

Similarly, let α = ∑m≥0 amtm ∈ ker(ϕ). Then α = Q f (β) for β = ∑m≥0 bmtm ∈ A−1[[t]]. The
leading term gives the relation a0 = ∂̄ f b0 which implies that [a0] = 0 in Jac( f ) by Lemma 2.2.
Therefore we can find c0 ∈ Γ(X, TX) such that ∂̄ f c0 = a0, and

α −Q f (c0) ∈ ker(ϕ) ∩ tΓ(X,OX)[[t]]

Inductively, we find c = ∑m≥0 cmtm ∈ Γ(X, TX)[[t]] such that α = Q f (c). Thus Ker(ϕ) =

Q f (Γ(X, TX)[[t]]).

By similar but easier arguments, we conclude Hk(PV(X)((t)), Q f ) = 0 if k 6= 0.

The proof forH f ,Ω ∼=→ H∗(PV(X)((t)), Q f ) is completely similar. �

Proposition-Definition 2.10. For any k ∈ Z, there are canonical isomorphisms of C[[t]]-modules:

H f ,Ω
(−k) := tkH f ,Ω

(0)

∼=→ H∗
(

tk PV(X)[[t]], Q f

) ∼=→ H∗
(

tkΩ∗X[[t]], d−f
)
=: H(−k)

f ,

where the second isomorphism is induced by Γ̂−ΩX
. The composition of the two isomorphisms is given by

[α] 7→ [α ` ΩX]. Here we have used the notation H f ,Ω
(−k) to distinguish it from H(−k)

f . The family

{H f ,Ω
(−k)}k∈Z≥0 form a filtration of H f ,Ω

(0) , called the (semi-infinite) Hodge filtration following [46]. The

associated graded piece of the filtration F kH f ,Ω
(0) = H f ,Ω

(−k) is given by

Grk
F (H

f ,Ω
(0) )
∼= tk Jac( f ).

Proof. By Lemma 2.7, we have isomorphic filtered complexes

Γ̂−ΩX
:
(
PV(X)[[t]], Q f

)
→ ∏

m∈Z

⊕
j≤m,i∈Z

Ai, j(X)⊗ tm, d−f ).
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It is easy to see that it identifies the filtered sub-complexes

Γ̂−ΩX
: (Γ(X,∧∗TX)[[t]], Q f )→ (Ω∗X[[t]], d−f )

passing to the cohomology yields the proposition.

�

Using the same V f and ρ as in the previous subsection, we can define the following operators,
in analogy with Tρ, Rρ.

Definition 2.11. Let Q := ∂̄+ t∂Ω. We define Tt
ρ : PV(X)((t))→ PVc(X)((t)) and Rt

ρ : PV(X)((t))→
PV(X)((t)) by

Tt
ρ := ρ+ [Q,ρ]V f

1
1 + [Q, V f ]

and Rt
ρ := (1− ρ)V f

1
1 + [Q, V f ]

.(2.12)

Clearly, Rt
ρ preserves PVc(X)[[t]], and Tt

ρ(PV(X)[[t]]) ⊂ PVc(X)[[t]]. Furthermore, Lemma 2.3
has the following generalization whose proof is completely similar.

Lemma 2.12. [Q f , Rt
ρ] = 1− Tt

ρ as operators on PV(X)((t)).

As a direct consequence of Proposition 2.9 and Lemma 2.12, we have

Corollary 2.13. The embeddings(
PVc(X)[[t]], Q f

)
↪→
(
PV(X)[[t]], Q f

)
,
(
PVc(X)((t)), Q f

)
↪→
(
PV(X)((t)), Q f

)
are both quasi-isomorphisms.

Similarly, we will denote by ιt the induced canonical isomorphisms

ιt : H∗(PVc(X)[[t]], Q f )
∼=−→ H f ,Ω

(0) , ιt : H∗(PVc(X)((t)), Q f )
∼=−→ H f ,Ω

whose inverse can be realized by
ι−1
t = Tt

ρ.

The trace map Tr : PVc(X) → C is naturally extended to PVc(X)[[t]] → C[[t]]. It further
descends to cohomologies, still denoted as Tr,

Tr : H∗(PVc(X)[[t]], Q f )→ C[[t]].(2.13)

The composition

R̂es
f
= Tr ◦ι−1

t : H f ,Ω
(0) →C[[t]](2.14)

provides a complex differential geometric interpretation of the higher residue map introduced by
the third author [43, 45].

Moreover, we can use the trace map Tr : PVc(X)→ C to define a pairing

PVc(X)[[t]]× PVc(X)[[t]]→ C[[t]] given by (α1ν1(t),α2ν2(t)) 7→ ν1(t)ν2(−t) Tr(α1α2),
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where α1,α2 ∈ PVc(X) and ν1,ν2 ∈ C[[t]]. It follows from Equations (2.5) that the differential
Q f is graded skew-symmetric: forα1 ∈ PVi, j

c (X),

Tr
(
Q f (α1ν1(t)) ∧α2ν2(t)

)
= −(−1)|α1| Tr

(
α1ν1(t) ∧Q f (α2ν2(t))

)
,

where the operator − : PV(X)((t))→ PV(X)((t)) is defined by

ν(t)α := ν(−t)α, whereα ∈ PV(X),ν(t) ∈ C((t))

Hence, the above pairing gives rise to a paring on the cohomology:

H∗(PVc(X)[[t]], Q f )× H∗(PVc(X)[[t]], Q f )→ C[[t]].

Combining it with the isomorphism ιt, we obtain a pairing

K f
Ω : H f ,Ω

(0) ×H
f ,Ω
(0) → C[[t]],(2.15)

called the higher residue pairing. We remark that R̂es
f
= K f

Ω(·, 1).

The above constructions are naturally extended to PVc(X)((t)) and H f ,Ω by replacing C[[t]]
with C((t)), and we have

K f
Ω : H f ,Ω ×H f ,Ω → C((t)).

Remark 2.14. The isomorphisms Γ̂+ΩX
and Γ̂−ΩX

are related via a pairing as follows. Consider

PVc(X)((t))× PVc(X)((t))→ C((t))

defined by (α1ν1(t),α2ν2(t)) 7→ t1−n ∫
X Γ̂+ΩX

(α1ν1(t)) ∧ Γ−ΩX
(α2ν2(t)), which differs slightly from the

pairing defined above by a sign. It is easy to check that this pairing descends to the cohomology, which
coincides with K f

Ω.

Example 2.15 (Am-singularity). Let X = C, f = zm+1

m+1 , and ΩX = dz. It is easy to compute that
V f = 1

f ′ ∂z∧. Let h(z) be a holomorphic function, and C be a small circle centered at the origin inside
which the value of the cut-off function ρ is identically equal to 1. Then

R̂es
f
(h) = ∑

r≥0
(−t)r Tr

((
∂̄ρ
)

V f
[
Q, V f

]r h
)
= ∑

r≥0
(−t)r Tr

((
∂̄ρ
) ∂z∧

f ′

(
∂

∂z
1
f ′

)r

h
)

= ∑
r≥0

(−t)r
∫
C

((
∂̄ρ
) dz

f ′

(
∂

∂z
1
f ′

)r

h
)
= ∑

r≥0
(−t)r

∮
C

(
dz
f ′

(
∂

∂z
1
f ′

)r

h
)

= ∑
r≥0

(−t)r Resz=0

(
1
f ′

(
∂

∂z
1
f ′

)r

hdz
)

= ∑
r≥0

(−t)r
r−1

∏
k=0

(m + k(m + 1))Resz=0

(
hdz

zr(m+1)+m

)
.

In particular, the leading term with r = 0 gives the ordinary residue Resz=0
hdz
f ′

.
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2.3.2. Opposite filtrations. Following Givental [22], we equip PVc(X)((t)) with a (graded) sym-
plectic pairing

ω(α1ν1(t),α2ν2(t)) := Rest=0(ν1(t)ν2(−t)dt) Tr(α1α2),

where α1,α2 ∈ PVc(X) and ν1,ν2 ∈ C((t)). Clearly, tk PVc(X)[[t]] is an isotropic subspace of
PVc(X)((t)) with respect to ω, for any k ∈ Z≥0. This gives rise to a paring on the cohomology.
Combing it with the isomorphism ιt, we obtain a symplectic paring:

ω : H f ,Ω ×H f ,Ω → C given by ω(s, s′) := Rest=0K f
Ω(s, s′)dt.

With respect to this pairing, all the Hodge filtered piecesH f ,Ω
(−k) are isotropic subspaces ofH f ,Ω.

Lemma/Definition 2.16. Let L be a linear subspace of H f ,Ω that satisfies both (1) H f ,Ω = H f ,Ω
(0) ⊕L

and (2) t−1L ⊂ L. Let B := H f ,Ω
(0) ∩ tL. Then the following are equivalent:

(3) ω(L,L) = 0; (3)′ K f
Ω(L,L) ⊂ t−2C[t−1]; (3)′′ K f

Ω(B, B) ⊂ C.

If L further satisfies (3), (3)′ or (3)′′, we call it an opposite filtration ofH f ,Ω.

Proof. Since L satisfies (1) and (2), we have H f ,Ω = tkH f ,Ω = H f ,Ω
(−k) ⊕ tkL, ∀k ∈ Z≥0. It leads

to the decompositionH f ,Ω
(−k) = H

f ,Ω
(−k−1) ⊕ (H f ,Ω

(−k) ∩ tk+1L) and induces an isomorphism of vector
spaces

H f ,Ω
(−k)/H

f ,Ω
(−k−1)

∼= H f ,Ω
(−k) ∩ tk+1L

for any k ∈ Z≥0. In particular, we have B = H f ,Ω
(0) ∩ tL ⊂ H f ,Ω

(0) and B ∼= H f ,Ω
(0) /H

f ,Ω
(−1)
∼= Jac( f ).

As a consequence, we have

H f ,Ω = B((t)), H f ,Ω
(0) = B[[t]], and L = t−1B[t−1].

Clearly, (3)′′ ⇒ (3)′, and (3)′ ⇒ (3). We show that (3)⇒ (3)′′.

Assuming (3), we only need to show that K f
Ω(B, B) ⊂ C[t−1] since K f

Ω(B, B) ⊂ C[[t]]. We
prove it by contradiction. Let s, s′ ∈ B such that K f

Ω(s, s′) = ∑
∞
i=−N aiti with ak 6= 0 for some

k > 0. This would imply that t−ks, t−1s′ ∈ L andω(t−ks, t−1s′) = −ak 6= 0, contradicting to the
hypothesis (3). �

Remark 2.17. The notion of opposite filtration, introduced by Deligne [15], was used by M. Saito for
the Hodge structures of the singularity [51, 53] to construct primitive forms. However, in the present
paper, we will use it for Denition 2.16 since in the parallel compact Calabi-Yau case, the analogue opposite
filtration is equivalent to a usual splitting of the Hodge filtration on H∗(X) (see for example [14, Lemma
5.2.2]). Therefore we will keep the terminology of opposite filtration with respect to the semi-infinite Hodge
filtration {H f ,Ω

(−k)}, which is sometimes called a polarization in the context of symplectic geometry [23].

As we will see in section 4, the space of primitive forms is essentially identified with the space
of appropriate opposite filtrations.
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3. PRIMITIVE FORMS

3.1. Frame setup. We recall some notions from [43], [48]. Recall that X ⊂ Cn is a Stein domain
and f : X → C is a holomorphic function with finite critical points.

Definition 3.1. We call a 4-tuple (Z, S, p, F) a frame associated to (X, f ), if the following are satisfied.

(1) The space Z is a Stein domain in Cn+µ, S is a Stein open neighborhood of the origin 0 of Cµ,
p : Z→ S is a Stein map with p−1(0) ∼= X, and F : Z→ C is a holomorphic function on Z.

(2) The restriction p|C(F) of p to the relative critical set C(F) (see Equation (3.2)) is a proper morphism.
(3) The function F is a universal unfolding of f in the following sense.

(a) The restriction F|p−1(0) coincides with the composition p−1(0)
∼=→ X

f→ C.
(b) The Kodaira-Spencer map

KS : TS → p∗OC(F),(3.1)

to be described below, is an isomorphism of sheaves of OS-modules. Let TS (resp. TZ)
denote the holomorphic tangent sheaf of S (resp. Z). For any open set U ⊂ S and any
V ∈ Γ (U, TS), we take a lifting Ṽ ∈ Γ

(
p−1(U), TZ

)
with p∗(Ṽ) = V. Then the Kodaira-

Spencer map is defined by KS|U(V) := Ṽ(F)|C(F), which is independent of the choice of the
lifting Ṽ.

In practice, it is convenient to fix a projection πX : Z → X (where we make Z smaller if
necessary), so that there is an embedding Z ↪→ X × S ⊂ Cn ×Cµ. In particular, the fiber p−1(0)
is given by X× {0}. With respect to such embedding, the Stein map p and the projection πX are
the restriction of the natural projections X × S → S and X × S → X to Z, respectively. In terms
of coordinates (z, u) of Cn ×Cµ, the relative critical set C(F) is a subvariety of Z defined by

C(F) := {∂z1 F = · · · = ∂zn F = 0}, and OC(F) = OZ
/
(∂z1 F, · · · , ∂zn F).(3.2)

We can always achieve a frame (Z, S, p, F) (see e.g. [48] for a precise choice when f : X → C
has an isolated critical point). Furthermore, we have

Proposition 3.2 ([43]). The structure sheaf OC(F) is flat over OS, so that p∗OC(F) is a locally free sheaf
on S of rank dimC Jac( f ).

Definition 3.3. The Euler vector field associated to (Z, S, p, F) is defined by

E := KS−1([F]) ∈ Γ(S, TS).(3.3)

Notations: In this section, we will study properties in the unfolding case parallel to those in the
previous section. Therefore, we will use the same notations as in section 2 to denote the relevant
operators in the unfolding case, such as ρ, Tρ, Rρ, Tt

ρ, ι, ιt, Tr, etc..
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3.2. Relative polyvector fields. Given a frame (Z, S, p, F), we denote by TZ/S the fiberwise holo-
morphic tangent bundle on Z relative to S, and consider the space of smooth relative polyvector
fields

PV(Z/S) =
⊕

0≤i≤n
0≤ j≤n+µ

PVi, j(Z/S), where PVi, j(Z/S) := A0, j
(

Z,∧iTZ/S

)
.

Similarly, we consider the space of smooth relative differential forms

A(Z/S) =
⊕

0≤i≤n
0≤ j≤n+µ

Ai, j(Z/S), Ai, j(Z/S) = A0, j
(

Z, Ωi
Z/S

)
.

We note that TZ/S contains n-directions tangent to the fiber of p, whereas A0,1 contains (n + µ)-
directions of anti-holomorphic cotangent vectors. We fix a family of holomorphic volume form
(which is nowhere vanishing)

ΩZ/S ∈ H0(Z, Ωn
Z/S).(3.4)

Contraction with ΩZ/S induces an isomorphism

ΓΩ : PVi, j(Z/S)→ An−i, j(Z/S)

of C∞(Z)-modules. Consequently, we have a relative version of the operators

∂̄ : PVi, j(Z/S)→ PVi, j+1(Z/S), ∂Ω : PVi, j(Z/S)→ PVi−1, j(Z/S),

where ∂Ω is defined by
∂Ω(α) := Γ−1

Ω

(
∂(ΓΩ(α))

)
.

Example 3.4. In coordinates (z, u) of Cn ×Cµ, everyα ∈ PVi, j(Z/S) is of the form

α = ∑
I,J1 ,J2

α I
J1 ,J2

(z, u)dz̄J1 dūJ2 ⊗
∂

∂zI

where the summation is over subsequences I, J1, J2 of [1, · · · , n], [1, · · · , n] and [1, · · · ,µ], respectively,
with |I| = i and |J1|+ |J2| = j. The volume form can be expressed by

ΩZ/S =
1

λ(z, u)
dz1 ∧ · · · ∧ dzn.

Then we have

∂Ωα =
n

∑
k=1

∑
I,J1 ,J2

λ∂zk

(α I
J1 ,J2

λ

) ∂

∂∂k

(
dz̄J1 dūJ2 ⊗

∂

∂zI

)
and ∂̄α = ∑

I,J1 ,J2

(∂̄α I
J1 ,J2

)dz̄J1 dūJ2 ⊗
∂

∂zI
.

The operator ∂Ω induces a bracket {-, -} on PV(Z/S), defined in the same way as formula
(2.2). We define the twisted coboundary operator in the relative setting by

∂̄F = ∂̄ + {F, -} : PV(Z/S)→ PV(Z/S).

We also consider the subspace

PVc(Z/S) := {α ∈ PV(Z/S)
∣∣ p|supp(α) is proper}.
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Clearly, all the operators ∂̄, ∂Ω, {-, -}, ∂̄F preserve the subspace PVc(Z/S). Since p : Z → S is a
Stein map, we can obtain sheaf-theoretic version of similar propositions in the previous section
as follows.

Let (z, u) be the coordinates of Cn ×Cµ ⊃ Z. Consider the following smooth operator VF of
degree −1 on PV((Z \ C(F))/S):

VF =
1

n
∑

j=1
|∂z j F|2

n

∑
i=1

(∂zi F)∂i ∧ .

Choose a smooth function ρ ∈ C∞(Z) such that ρ|U1 ≡ 1 and ρ|Z\U2
≡ 0 for some open neigh-

borhoods U1, U2 of C(F) in Z with the properties (a) U1 ⊂ U1 ⊂ U2 ⊂ U2 ⊂ Z, and (b) p|U2
is

proper. Then the operators

Tρ := ρ+ (∂̄ρ)VF
1

1 + [∂̄, VF]
and Rρ := (1− ρ)VF

1
1 + [∂̄, VF]

are both defined on the whole space PV(Z/S). Furthermore, we have

Tρ(PV(Z/S)) ⊂ PVc(Z/S),

such that [
∂̄F, Rρ

]
= 1− Tρ.(3.5)

Let R•p∗
(
PVc(Z/S), ∂̄F

)
be the sheaf of OS-modules on S obtained by the sheafification of

{H∗
(
PVc(p−1(U)/U), ∂̄F

)
| U ⊂ S is open Stein}. Similarly, we obtain R•p∗

(
PV(Z/S), ∂̄F

)
.

Proposition 3.5. There is a natural isomorphism of sheaves

p∗OC(F)
∼=−→ R•p∗

(
PV(Z/S), ∂̄F

)
.

Proof. The statement follows immediately from the sheafification of Lemma 2.2. �

Proposition 3.6. The natural embedding
(
PVc(Z/S), ∂̄F

)
↪→
(
PV(Z/S), ∂̄F

)
is quasi-isomorphic, in-

ducing a canonical isomorphism of sheaves

ι : R•p∗
(
PVc(Z/S), ∂̄F

) ∼=−→ p∗OC(F)

whose inverse morphism can be represented by Tρ.

Proof. Formula (3.5) implies that H∗
(

PV(p−1(U)/U)/ PVc(p−1(U)/U), ∂̄F
)
= 0 for any open

(Stein) subset U of S. The first statement follows, and the second statement becomes a direct
consequence of Proposition 3.5. �
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In analogy with the descriptions in section 2.3, we consider the complex PV(Z/S)((t)) (resp.
PVc(Z/S)((t))) of PV(Z/S) (resp. PVc(Z/S))-valued Laurent series in the descendant variable
t, with respect to the following twisted coboundary operator

QF := ∂̄F + t∂Ω.

Proposition-Definition 3.7. There are isomorphisms of sheaves of cochain complexes

Γ̂±Ω : (PV(Z/S)((t)), QF)→
(
A(Z/S)((t)), d±F

)
with d+F := d +

dF
t
∧, d−F = td + (dF)∧,

defined by

tkα ∈ tk PVi, j(Z/S) 7→ Γ̂+Ω (tkα) := tk+i−1α ` ΩZ/S ∈ tk+i−1An−i, j(Z/S),

tkα ∈ tk PVi, j(Z/S) 7→ Γ̂−Ω (tkα) := tk+ jα ` ΩZ/S ∈ tk+ jAn−i, j(Z/S).

Proof. The proof is the same as Proposition-Definition 2.7. �

The following operators are defined on PV(Z/S)((t)):

Tt
ρ := ρ+ [Q,ρ]VF

1
1 + [Q, VF]

and Rt
ρ := (id− ρ)VF

1
1 + [Q, VF]

,

where Q := ∂̄ + t∂Ω. The relation
[QF, Rt

ρ] = 1− Tt
ρ

still holds where defined. In addition, we have

Tt
ρ(PV(Z/S)[[t]]) ⊂ PVc(Z/S)[[t]], Tt

ρ(PV(Z/S)((t))) ⊂ PVc(Z/S)((t)).

Consider the sheavesHF,Ω
(0) andHF,Ω := HF,Ω

(0) ⊗C[[t]] C((t)), where

HF,Ω
(0) (U) :=

Γ(p−1(U),OZ)[[t]]
Im
(
QF : Γ(p−1(U), TZ/S)[[t]]→ Γ(p−1(U),OZ)[[t]]

) , for Stein U ⊂ S.

Proposition 3.8. There are canonical isomorphisms of sheaves of OS-modules

ιt : R•p∗
(
PVc(Z/S)[[t]], QF

) ∼=→ R•p∗(PV(Z/S)[[t]], QF) ∼= HF,Ω
(0) .

The inverse of the composition ιt of the above isomorphism can be represented by Tt
ρ.

Proof. The proof is completely similar to the proofs of Proposition 2.9 and Corollary 2.13. �

Proposition-Definition 3.9. For any k ∈ Z, we define HF,Ω
(−k) := tkHF,Ω

(0) . The family version of the

filtered complex isomorphism Γ̂−ΩX
gives a canonical isomorphism of sheaves of OS[[t]]-modules:

Γ̂−Ω : HF,Ω
(−k)

∼=→ R•p∗(tkΩ∗Z/S[[t]], d−F ) =: H(−k)
F

defined by tk[α] 7→ [tkα ` ΩZ/S]. The (semi-infinite) Hodge filtration ofHF,Ω
(0) is defined by {HF,Ω

(−k)}k∈Z≥0 .

Proof. The argument is completely similar to the proof of Proposition-Definition 2.10. �
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3.3. Variation of semi-infinite Hodge structures. The general structures of higher residues and
primitive forms developed in [45, 46] were geometrically reformulated by Barannikov as the
notion of variation of semi-infinite Hodge structures [2, 4]. We will adopt this geometric notion and
present the corresponding constructions in our case.

3.3.1. Gauss-Manin connection. The sheafHF,Ω inherits a flat Gauss-Manin connection [8, 46]

∇Ω : HF,Ω → Ω1
S ⊗HF,Ω

from its identification with differential forms via ΩZ/S. To describe this, we consider the isomor-
phism of cochain complexes in Proposition-Definition 3.7

Γ̂+Ω : (PV(Z/S)((t)), QF)→
(
A(Z/S)((t)), d+F

)
with d+F := d +

dF
t
∧,

which induces an isomorphism of sheaves of OS-modules, still denoted as

Γ̂+Ω : HF,Ω ∼= R•p∗ (PV(Z/S)((t)), QF)
∼=→ R•p∗

(
A(Z/S)((t)), d+F

)
.

Lemma/Definition 3.10. The sheaf R•p∗
(
A(Z/S)((t)), d+F

)
naturally carries the Gauss-Manin con-

nection

∇GM : R•p∗
(
A(Z/S)((t)), d+F

)
→ Ω1

S ⊗ R•p∗
(
A(Z/S)((t)), d+F

)
.

Proof. This is a twisted version of the usual differential geometric construction.

Let V ∈ TS be a holomorphic vector field on S, and we choose an arbitrary smooth lifting Ṽ to
a vector field of type (1, 0) on Z such that

p∗(Ṽ) = V.

Let [α] ∈ R•p∗
(
A(Z/S)((t)), d+F

)
be a section represented byα ∈ A(Z/S)((t)). Then the Gauss-

Manin connection is defined by

∇GM
V [α] =

[
LṼα +

∂Ṽ(F)
t

α

]
(3.6)

where LṼ is the Lie derivative with respect to Ṽ. It is routine to check that ∇GM is well-defined
and gives a flat connection. �

Definition 3.11. We define the Gauss-Manin connection ∇Ω onHF,Ω associated with ΩZ/S by

∇Ω :=
(
Γ̂+Ω
)−1 ◦

(
∇GM

)
◦ Γ̂+Ω .

The next properties follow directly from the definition of the connection ∇Ω:

Lemma 3.12 (Transversality). ∇Ω|HF,Ω
(0)

: HF,Ω
(0) → Ω1

S ⊗ t−1HF,Ω
(0) = Ω1

S ⊗H
F,Ω
(1) .

Lemma 3.13 (Flatness). ∇Ω ◦ ∇Ω = 0.



26 CHANGZHENG LI, SI LI, AND KYOJI SAITO

Now we describe the Gauss-Manin connection ∇Ω in coordinates (z, u) of Cn × Cµ. Since
p : Z → S is the restriction of the natural projection Cn × Cµ → Cµ, a special lifting of a local

section V =
µ

∑
j=1

g j(u) ∂

∂u j
of TS is given by

(3.7) V̂ :=
µ

∑
j=1

(p∗g j)
∂

∂u j
,

where ∂

∂u j
is defined using the projection πX : Z→ X.

Proposition 3.14. If ΩZ/S = 1
λ(z)dz1 ∧ · · · ∧ dzn ∈ π∗X(Γ(X, Ωn

X)), where λ is a nonwhere vanishing
holomorphic function on Z depending only on the fiber direction, then

∇Ω
V [s] =

[
∂V̂s +

∂V̂ F
t

s
]

,(3.8)

where [s] ∈ HF,Ω is represented by s ∈ Γ (Z,OZ) ((t)).

As we will see in section 3.5, the choice of ΩZ/S is not essential. Hence, in this paper we will
always choose the volume form ΩZ/S to be independent of the deformation parameters. In such
case, the calculation of the connection ∇Ω is simplified as in the above proposition.

3.3.2. Extended Gauss-Manin connection. We would like to think about t as a coordinate on the
formal punctured disk ∆̂∗ = SpecC((t)), and HF,Ω is naturally a locally free sheaf on S × ∆̂∗.
Then we can extend the flat connection ∇Ω to S× ∆̂∗ as follows. For s ∈ PVi,∗(Z/S)((t)), we
define

∇Ω
t∂t

s = t∇Ω
∂t

s :=
(

t
∂

∂t
+ i− F

t

)
s.(3.9)

Clearly, ∇Ω
t∂t

preserves PVc(Z/S)((t)). The next lemma follows from direct calculations

Lemma 3.15. [∇Ω
t∂t

, QF] = 0 holds as operators on PV(Z/S)((t)), hence ∇Ω
t∂t

descends to an operator
onHF,Ω. Furthermore for any V ∈ Γ(S, TS), we have [∇Ω

t∂t
,∇Ω

V ] = 0.

It follows that ∇Ω is extended to a well-defined flat connection on S × ∆̂∗ for the sheaf HF,Ω

viewed asOS×∆̂∗-module, which we will call the extended Gauss-Manin connection. The originally
defined connection ∇Ω on S will be referred to as the non-extended connection.

3.3.3. Higher residues. We define a cochain map Tr of complexes of sheaves on S,

Tr : (PVc(p−1(U)/U)((t)), QF)→ (A0,∗(U)((t)), ∂̄S),

by

Tr(ν(t)α) := ν(t)
∫

p−1(U)/U
(α ` ΩZ/S) ∧ΩZ/S, ν(t) ∈ C((t)),α ∈ PVc(p−1(U)/U)
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where ∂̄S denotes the usual ∂̄ operator on differential forms on S,
∫

p−1(U)/U denotes the fiberwise
integration, and U ⊂ S is a Stein open subset. It gives rise to a map of sheaves of cohomologies

Tr : R•p∗(PVc(Z/S)((t)))→ OS((t)),(3.10)

as the family version of the trace map in formula (2.13).

Similarly, we define a pairing

KF,c
Ω (-, -) : PVc(p−1(U)/U)((t))⊗ PVc(p−1(U)/U)((t))→ A0,∗(U)((t)),

by
KF,c

Ω (ν1(t)α1,ν2(t)α2) := ν1(t)ν2(−t) Tr (α1α2)

where ν1,ν2 ∈ C((t)) andα1,α2 ∈ PVc(p−1(U)/U).

Lemma 3.16. The pairing KF,c
Ω (-, -) on PVc(p−1(U)/U) gives rise to that on cohomology:

KF,c
Ω (-, -) : R•p∗(PVc(Z/S)((t)))⊗ R•p∗(PVc(Z/S)((t)))→ OS((t)).

Proof. The relative version of formula (2.5) says thatKF,c
Ω is a cochain map. Letα,β ∈ PVc(Z/S)((t))

be QF-closed, representing sections of R•p∗(PVc(Z/S)((t))). We can assume that bothα,β have
degree 0, hence KF,c

Ω (α,β) ∈ C∞(S)((t)). Moreover,

∂̄SKF,c
Ω (α,β) = KF,c

Ω (QFα,β) +KF,c
Ω (α, QFβ) = 0,

i.e., KF,c
Ω (α,β) ∈ OS((t)). �

This allows us to give the complex differential geometric construction of the higher residue
pairing [45].

Definition 3.17. We define the higher residue pairing

KF
Ω (-, -) : HF,Ω ⊗HF,Ω → OS((t))

by KF
Ω ([s], [s′]) := KF,c

Ω

(
ι−1
t ([s]), ι−1

t ([s′])
)

for sections [s], [s′] of HF,Ω (see Proposition 3.8 for the
isomorphism ιt).

Every local section ι−1
t [s] of R•p∗(PVc(Z/S)((t))) has a representative Tt

ρ(s). Hence we have
the following explicit formula

KF
Ω

(
[s], [s′]

)
= Tr

(
Tt
ρ(s)Tt

ρ(s′)
)

where the − operator is defined by

− : PV(Z/S)((t))→ PV(Z/S)((t)), ν(t)α := ν(−t)α forα ∈ PV(Z/S).

Remark 3.18. Since both Tt
ρ(s) and Tt

ρ(s′) have compactly support along the fiber direction,

KF
Ω

(
[s], [s′]

)
= Tr

(
Tt
ρ(s)s′

)
= Tr

(
s Tt

ρ(s′)
)

.
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Definition 3.19. The higher residue map associated to (Z, S, p, F) and Ω is defined by the composition

R̂es
F

:= Tr ◦ι−1
t : HF,Ω → OS((t)).

As before, if we restrict KF
Ω toHF,Ω

(0) , it takes values in OS[[t]]. That is,

KF
Ω (-, -) : HF,Ω

(0) ⊗H
F,Ω
(0) → OS[[t]].

The triple {HF,Ω
(0) ,KF

Ω (-, -) ,∇Ω} satisfy the following properties.

Proposition 3.20. Let s1, s2 be local sections ofHF,Ω
(0) .

(1) KF
Ω (s1, s2) = KF

Ω (s2, s1).
(2) KF

Ω(ν(t)s1, s2) = KF
Ω(s1,ν(−t)s2) = ν(t)KF

Ω(s1, s2) for any ν(t) ∈ OS[[t]].
(3) ∂VKF

Ω(s1, s2) = KF
Ω(∇Ω

V s1, s2) +KF
Ω(s1,∇Ω

V s2) for any local section V of TS.
(4) (t∂t + n)KF

Ω (s1, s2) = KF
Ω(∇Ω

t∂t
s1, s2) +KF

Ω(s1,∇Ω
t∂t

s2).
(5) The higher residue pairing induces a pairing on

HF,Ω
(0) /tHF,Ω

(0) ⊗OS H
F,Ω
(0) /tHF,Ω

(0) → OS,

which coincides with the classical residue pairing p∗OC(F)⊗OS p∗OC(F) → OS. In particular, the
induced pairing is non-degenerate.

Proof. The first four statements follow from direct calculations and the definition of the pairing
KF

Ω(-, -).

The fiber of HF,Ω
(0) /tHF,Ω

(0) at u ∈ S is given by H∗(PVc(Zu), ∂̄F|Zu
) = Jac(F|Zu), where Zu :=

p−1(u). By Proposition 2.5, the pairing at u coincides with the residue pairing Jac(F|Zu) ⊗
Jac(F|Zu)→ C, which is known to be non-degenerate [25]. Hence (5) follows. �

The triple {HF,Ω
(0) ,KF

Ω (-, -) ,∇Ω} satisfying properties of Proposition 3.20 and the Transversal-
ity (Lemma 3.12) is called a variation of semi-infinite Hodge structure, a notion due to Barannikov
[4].

3.4. Primitive forms. With the triple {HF,Ω
(0) ,KF

Ω (-, -) ,∇Ω}, we can define the notion of prim-
itive forms [46]. In terms of variation of semi-infinite Hodge structures, the primitive forms
correspond geometrically to the semi-infinite period maps [4].

Definition 3.21. A section ζ ∈ Γ(S,HF,Ω
(0) ) is called a primitive form if it satisfies the following condi-

tions:

(P1) (Primitivity) The section ζ induces an OS-module isomorphism

t∇Ωζ : TS → HF,Ω
(0) /tHF,Ω

(0) = p∗OC(F); V 7→ t∇Ω
Vζ .
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(P2) (Orthogonality) For any local sections V1, V2 of TS,

KF
Ω

(
∇Ω

V1
ζ ,∇Ω

V2
ζ
)
∈ t−2OS.(3.11)

(P3) (Holonomicity) For any local sections V1, V2, V3 of TS,

KF
Ω

(
∇Ω

V1
∇Ω

V2
ζ ,∇Ω

V3
ζ
)
∈ t−3OS ⊕ t−2OS;(3.12)

KF
Ω

(
∇Ω

t∂t
∇Ω

V1
ζ ,∇Ω

V2
ζ
)
∈ t−3OS ⊕ t−2OS.(3.13)

(P4) (Homogeneity) Recall the Euler vector field E is defined in (3.3). There is a constant r ∈ C
such that (

∇Ω
t∂t

+∇Ω
E

)
ζ = rζ .

Remark 3.22. The hypothesis (3.13) follows from the combination of (P2), (3.12) and (P4).

The properties of a primitive form give rise to a set of flat coordinates and an associated Frobe-
nius manifold structure on the universal unfolding S, which was originally called by the third
author the flat structure [46]. This is exposed in detail via the modern point of view in [48]. An
exposition for Calabi-Yau manifolds parallel with our current setting is given in [35] . As we will
see in the next section, primitive forms can be constructed by using good opposite filtrations L
of H f ,Ω. This leads to a concrete way to compute the flat coordinates and the potential function
of the associated Frobenius manifold structure [32].

3.5. Intrinsic properties. So far we have fixed a relative holomorphic volume form Ω := ΩZ/S

(see formula (3.4)) in order to define a primitive form. In this subsection, we will discuss proper-
ties of higher residue pairings and primitive forms associated with different choices 1

λΩ, where
λ ∈ H0(Z,O∗Z) is a nowhere vanishing holomorphic function on Z. We will use the subscript
1
λΩ to indicate such a choice. For instance, we will denote QF, 1

λΩ
for the differential and HF, 1

λΩ

to specify the dependence on the choice. We will denote by [x] 1
λΩ

a local section of HF, 1
λΩ, rep-

resented by a PV(Z/S)-valued Laurent series x in t. In this subsection, we will also identify our
primitive forms with the primitive forms in the original approach via differential forms.

Recall that we have isomorphisms of cochain complexes

Γ̂±1
λΩ

:
(

PV(Z/S)((t)), QF, 1
λΩ

) ∼=−→
(
A(Z/S)((t)), d±F

)
.

Here we will use Γ̂+1
λΩ

, while we remark that the other isomorphism Γ̂−1
λΩ

also works.

Let us still denote by Γ̂+1
λΩ

the composition

Γ̂+1
λΩ

: HF, 1
λΩ

∼=−→ R•p∗
(

PV(Z/S)((t)), QF, 1
λΩ

) ∼=−→ R•p∗
(
A(Z/S)((t)), d+F

)
of isomorphisms of sheaves of OS-modules.
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Lemma 3.23. For any x ∈ PV(Z/S)((t)) and λ ∈ H0(Z,O∗Z), we have

(1) Γ̂+1
λΩ

(λx) = Γ̂+Ω (x); (2) QF, 1
λΩ

(λx) = λQF,Ω(x).

Proof. Statement (1) is obvious. (2) follows from the observation ∂ 1
λΩ

(λx) = λ∂Ω(x). �

As a direct consequence, we have

Corollary 3.24. For every λ ∈ H0(Z,O∗Z), the map ψλ : HF,Ω → HF, 1
λΩ by [x]Ω 7→ [λx] 1

λΩ
is well

defined, and defines an isomorphism of sheaves of OS-modules. Furthermore, we have Γ̂+1
λΩ
◦ψλ = Γ̂+Ω .

We refer to the next proposition as the intrinsic properties among the higher residue pairings
and the associated Gauss-Manin connection.

Proposition 3.25. Let λ ∈ H0(Z,O∗Z). For any local sections [x]Ω, [y]Ω ∈ HF,Ω,

KF
1
λΩ

(
[λx] 1

λΩ
, [λy] 1

λΩ

)
= KF

Ω ([x]Ω, [y]Ω) .

Furthermore, we have

∇
1
λΩ

V [λx] 1
λΩ

= [λ∇Ω
V x] 1

λΩ
and ∇

1
λΩ

t∂t
[λx] 1

λΩ
= [λ∇Ω

t∂t
x] 1

λΩ
,

where V is a local section of the holomorphic tangent sheaf TS.

Proof. Recall that we have defined the operator VF and Tt
ρ, and ι−1

t can be realized by Tt
ρ. Note

Q 1
λΩ

(λx) = λQΩ(x), VF(λx) = λVF(x), {F, λx} = λ{F, x}.

It follows that Tt
ρ, 1
λΩ

(λx) = λTt
ρ,Ω(x). Hence,

KF
1
λΩ

(
[λx] 1

λΩ
, [λy] 1

λΩ

)
=
∫

Z/S

((
Tt
ρ, 1
λΩ

(λx) ∧ Tt
ρ, 1
λΩ

(λy)
)
` 1
λ
Ω

)
∧ 1
λ
Ω

=
∫

Z/S

((
Tt
ρ,Ω(x) ∧ Tt

ρ,Ω(y)
)
` Ω

)
∧Ω

= KF
Ω ([x]Ω, [y]Ω) .

The compatible relations on the Gauss-Manin connections∇ 1
λΩ follow from that fact that they

are all induced from that on differential forms via the isomorphism Γ̂+1
λΩ

. �

As a direct consequence of the above proposition, we have

Proposition 3.26. A section ζ = [x]Ω ∈ Γ(S,HF,Ω
(0) ) is a primitive form with respect to the choice Ω if

and only if the section [λx] 1
λΩ
∈ HF, 1

λΩ

(0) is a primitive form with respect to the choice 1
λΩ.
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In order to identify the primitive forms in our setting with the original ones, we let t = δ−1
w

following the notation convention in [48], and recall some facts therein. The natural embedding
of (Ω∗Z/S((t)), d−F ) ↪→ (A(Z/S)((t)), d−F ) is a quasi-isomorphism (by Lemma 2.2 together with

Γ̂−ΩX
). This gives a canonical isomorphism

HF := R•p∗(Ω∗Z/S((t)), d−F )
∼=→ R•p∗(A(Z/S)((t)), d−F ).

The de Rham cohomology group HF is equipped a filtration {H(−k)
F }k∈Z given in Definition 3.9.

There is also the Gauss-Manin connection∇GM : HF → HF defined the same formula as in (3.6),
which is extended along δW by

∇GM
δw∂δw

[α] := [(δw∂δw + δwF)α].

Theorem 3.27. (1) The extended Gauss-Manin connections ∇Ω and ∇GM are compatible in the sense:

Γ̂−Ω ◦ ∇
Ω
t∂t

= −∇GM
δw∂δw

◦ Γ̂−Ω , Γ̂−Ω ◦ ∇
Ω
V = ∇GM

V ◦ Γ̂−Ω , for any local holomorphic vector filed V.

(2) The next pairing KF coincides with the third author’s higher resider pairing onHF in [45].

KF :HF ⊗HF → OS((t))

KF([α1], [α2]) : = tnKF
Ω

(
(Γ̂−Ω )−1([α1]), (Γ̂−Ω )−1([α2])

)
(3) A section [x] ∈ Γ(S,HF,Ω

(0) ) is a primitive form with respect to {HF,Ω
(0) ,KF

Ω(-, -),∇Ω} if and only if

the section [xΩ] ∈ Γ(S,H(0)
F ) is a primitive form with respect to {H(0)

F ,KF(-, -),∇GM}.

Proof. (1) The relation t = δ−1
w implies t∂t = −δw∂δw . The first identify follows from direct

calculations. The second identity also follows from the definitions, by observing that each section
[x] ofHF,Ω is represented by an element x of OZ((t)).

(2) It follows directly from Proposition 3.20 that the pairing KF(-, -) satisfies all the properties
of Theorem 5.1 of [48]. Therefore it coincides with the third author’s higher residue pairing on
HF by the uniqueness as stated in the same theorem.

(3) The statement also follows by directly checking according to the definitions. �

Primitive forms are invariant under the stably equivalence. Precisely, for any m ∈ Z>0, we
define a holomorphic function fm on Xm := X ×Cm, by fm := f + ∑

m
i=1 z2

n+i. Let πm denote the
natural projection from Zm := Z×Cm to Z. Then we obtain a frame (Zm, S, pm, Fm) associated to
(Xm, fm), where pm := p ◦πm is a Stein map from Zm to S, and Fm := F+∑

m
i=1 z2

n+i is the universal
unfolding of fm. We let ΩZm/S := ΩZ/S ∧ dzn+1 ∧ · · · ∧ dzn+m. Because of the coincidence of
primitive forms in our setting with the original sense by using differential forms in Theorem
3.27, we have

Proposition 3.28 (see section 6 of [43]). A section ζ ∈ Γ(S,HF,Ω
(0) ) is a primitive form with respect to

the choice ΩZ/S if and only if π∗m(ζ) is a primitive form in Γ(S,HFm
(0)) with respect to the choice ΩZm/S.
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Furthermore if m is even, then there is an isomorphism of OS-modules,

ρm : HF,Ω
(`)

∼=−→ HFm
(`)

, ∀` ∈ Z≤0,

which is equivariant with respect to the extended Gauss-Manin connection.

Remark 3.29. In the original approach to primitive forms by differential forms, there is a degree shifting
on the left hand side of the isomorphism ρm. More precisely, the degree on the left should be shifted to
`− m

2 , and the isomorphism is given by
(
∇GM

∂t

)m
2 dzn+1 ∧ · · · ∧ dzn+m with the Gauss-Manin connection

∇GM
∂t

for differential forms.

4. GENERAL CONSTRUCTIONS OF PRIMITIVE FORMS

In this section, we will give an explicit description of primitive forms in the germ of the
universal unfolding of (X, f ). The main idea is based on the third author’s good sections [44]
and Barannikov’s formula [4] of semi-infinite period maps. See also [35] on its connection with
Kodaira-Spencer gauge theory. The existence of a primitive form as a germ was already proved
in [50] and [16] in the corresponding situations.

We will first construct primitive forms in the formal neighborhood of the reference point in
the universal unfolding. The use of formal setting not only simplifies the presentation of the
primitive forms, but also gives an explicit formula (Theorem 4.15) which is closely related to the
oscillatory integral. Via this new approach, we find an explicit algorithm to compute the Taylor
series expansion of the primitive forms up to arbitrary finite order. This is applied in the next
section to recover known examples of primitive forms and new results for exceptional unimod-
ular singularities. The analytic nature of the formal primitive forms follows by comparing the
formal construction with the original analytic construction [46].

Let (Z, S, p, F) be a frame (see Definition 3.1) associated to (X, f ). In addition, a projection
πX : Z → X has been chosen, so that we obtain an embedding πX × p : Z↪→X × S (where Z is
made smaller if necessary). We will choose the relative holomorphic volume form

ΩZ/S = π∗XΩX

where ΩX is a fixed holomorphic volume form on X. By Proposition 3.14, the (non-extended)
Gauss-Manin connection ∇Ω can be simplified as equation (3.8), namely

∇Ω
V [s] =

[
∂Vs +

∂V F
t

s
]

,

where we have abused the notation V with its lifting V̂ (see (3.7)) on the right hand side.

We will let

F0 := π∗X f

denote the trivial unfolding.
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4.1. Formal geometry.

4.1.1. Formal set-up. We fix some notions to be used in our formal set-up first. Let m denote the
maximal ideal of the local ring OS,0 of the reference point 0 ∈ S. Let RN := OS,0/m

N where N is
a positive integer. We consider the inverse system

R := {RN | N ∈ Z>0},

where, for N ≥ N′, the morphismϕN,N′ : RN → RN′ is given by the natural projection. Clearly,
the associated system {Spec(RN)}N ofR form a basis of the formal neighborhood of the reference
point 0 ∈ S. Here on after we simply denote the subscript N ∈ Z>0 as N without confusion.

Definition 4.1. By a R-module F , we mean a set {FN}N , each FN being a RN-module, together with
morphisms ΦN+1,N : FN+1 → FN of RN+1-modules (by viewing FN as a RN+1-module via ϕN+1,N)
that induce isomorphisms of RN-modules: FN+1 ⊗RN+1 RN

∼=→ FN . Direct product for R-modules is
defined in the similar fashion.

Let Γ(R,F ) denote the space of sections of F on R, where by a section s we mean a set {sN}N with
each sN an element in FN , satisfying the compatibility condition:

sN = ΦN+1,N(sN+1), ∀N.

The space Γ(R,F ) is naturally an ÔS,0-module, where ÔS,0 denotes the formal completion
of OS,0 at the reference point 0 with respect to the maximal ideal m. In particular, it is also an
OS,0-module.

Definition 4.2. Let E be an OS-module on S. We define the inducedR–module Ě := {ĚN}N by setting

ĚN := E ⊗OS,0 RN ,

via the natural projectionϕRN : OS,0 → RN .

Lemma/Definition 4.3. Let E be an OS-module with a connection ∇ : E → Ω1
S ⊗ E , then there is an

induced map
∇̌ : Γ(R, Ě)→ Ω1

S ⊗OS Γ(R, Ě)
satisfying the Leibniz rule:

∇̌(as) = da⊗ s + a⊗ ∇̌s, for any a ∈ OS and s ∈ Γ(R, Ě).

Whenever there is no confusion, we will simply denote ∇̌ as ∇ by abuse of notations.

Proof. Let s = {sN}N be a section in Γ(R, Ě), and V be a local section of TS. Let s̃N+1 ∈ E be a
lifting of sN+1, and we define

(∇̌Vs)N :=ϕRN (∇V s̃N+1).

It is easy to check that ∇̌Vs does not depend on the choice of the lifting, and defines an element
in Γ(R, Ě). The Leibniz rule follows easily. �
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4.1.2. Formal primitive forms. Recall that given the frame (Z, S, p, F), we have the free OS[[t]]-
module HF,Ω

(0) and the free OS((t))-module HF,Ω with the extended Gauss-Manin connection

∇Ω. As OS-modules, they induce the corresponding R-modules ȞF,Ω
(0) and ȞF,Ω respectively.

The space Γ(R, ȞF,Ω
(0) ) (resp. Γ(R, ȞF,Ω)) inherits the structure of C[[t]]-module (resp. C((t))-

module). By Lemma 4.3, Γ(R, ȞF,Ω) is equipped with the induced non-extended Gauss-Manin
connection, which is easily seen to be extended along the t∂t direction in the similar way. Such
extended flat connection on Γ(R, ȞF,Ω) is again denoted as ∇Ω without confusion.

Remark 4.4. Given a section {sN}N of Ě , we can take the inverse limit ŝ := lim←−N
sN in lim←−N

E/mNE .
When E is given by theOS-moduleHF,Ω

(0) , the inverse limit ŝ is still a formal power series in the descendent
variable t. However, when E = HF,Ω, the power of t in the limit ŝ may go to −∞.

The higher residue pairing defines a natural pairing for each N, by tensoring with RN ,

K̂F,N
Ω :

(
HF,Ω

(0) ⊗OS RN
)
⊗RN

(
HF,Ω

(0) ⊗OS RN
)
→ RN [[t]]

Lemma/Definition 4.5. There is an induced formal higher residue pairing

K̂F
Ω : Γ(R, ȞF,Ω

(0) )⊗ÔS,0
Γ(R, ȞF,Ω

(0) )→ ÔS,0[[t]]

satisfying similar properties as in Proposition 3.20.

Proof. Let s = {sN}N , s′ = {s′N}N ∈ Γ(R, ȞF,Ω
(0) ). The pairing K̂F

Ω(s, s′) is defined by

K̂F
Ω(s, s′) := lim←−

N
K̂F,N

Ω (sN , s′N).

�

Now we formulate primitive forms in the formal neighborhood as well.

Definition 4.6. A section ζ ∈ Γ(R, ȞF,Ω
(0) ) is called a formal primitive form if it satisfies the following

conditions:

(P1)∨ The section ζ induces an ÔS,0-module isomorphism

t∇Ωζ : ÔS,0 ⊗OS TS → Γ(R, ȞF,Ω
(0) )/tΓ(R, ȞF,Ω

(0) ); V 7→ t∇Ω
Vζ .

(P2)∨ For any local holomorphic vector fields V1, V2 on S,

K̂F
Ω

(
∇Ω

V1
ζ ,∇Ω

V2
ζ
)
∈ t−2ÔS,0.

(P3)∨ For any local holomorphic vector fields V1, V2, V3 on S,

K̂F
Ω

(
∇Ω

V1
∇Ω

V2
ζ ,∇Ω

V3
ζ
)
∈ t−3ÔS,0 ⊕ t−2ÔS,0;

K̂F
Ω

(
∇Ω

t∂t
∇Ω

V1
ζ ,∇Ω

V2
ζ
)
∈ t−3ÔS,0 ⊕ t−2ÔS,0.
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(P4)∨ Recall the Euler vector field is given in (3.3). There is a constant r ∈ C such that(
∇Ω

t∂t
+∇Ω

E

)
ζ = rζ .

There is a natural map by restricting to the formal neighborhood

{primitive forms in the germ of 0 around S} → {formal primitive forms around 0}

We will see later that this map is in fact a bijection. This reduces the construction of primitive
forms to the formal neighborhood.

4.1.3. Formal splitting.

Lemma/Definition 4.7. The map

e( f−F)/t : H f ,Ω → Γ(R, ȞF,Ω),(4.1)

given by

[s] 7→ e( f−F)/t[s] := {[šN ]}N with šN :=ϕRN (e
(F0−F)/tπ∗X(s)),(4.2)

is well-defined, independent of choices of the representatives s. Furthermore, e( f−F)/t[s] is flat with respect
to the non-extended Gauss-Manin connection ∇Ω, which will be called the formal flat extension of [s].

The above map e( f−F)/t induces an isomorphism of RN-modules

e( f−F)/t|N : H f ,Ω ⊗C RN→HF,Ω ⊗OS RN , defined by [s]⊗ r 7→ [ršN ],(4.3)

whose inverse is

e(F− f )/t|N : HF,Ω ⊗OS RN→H f ,Ω ⊗C RN , defined by [b]⊗ 1 7→ [ϕRN (e
(F−F0)/tb)].(4.4)

We will skip the subscript “|N” whenever there is no confusion.

Proof. Let s = α + Q f (β) for someα ∈ Γ(X,OX)((t)) and β ∈ PV(X)((t)). The map in (4.1) is in
fact the composition of the following maps:

H f ,Ω → H f ,Ω ⊗C OS
∼=→ HF0 ,Ω e(F0−F)/t

→ Γ(R, ȞF,Ω),

where the first map is given by [s] 7→ [s]⊗ 1, the second map is an isomorphism of OS-modules
defined by [s]⊗ g 7→ [gπ∗X(s)], and the third map is defined by using (4.2). By direct calculations,
we have

ϕRN

(
e(F0−F)/tπ∗X

(
Q f (β)

))
=ϕRN

(
e(F0−F)/tQF0(π

∗
X(β))

)
=ϕRN

(
QF
(
e(F0−F)/tπ∗Xβ

))
.

Since F0 − F ∈ OX ⊗ m, the series expansion of ϕRN (e
(F0−F)/t) = ∑

N
k=0

1
k!

(F0−F)k

tk ∈ RN [t, t−1],
whose pole in t is of finite order. Therefore [šN ] is a well-defined element in HF,Ω ⊗OS RN ,
independent of choices of representatives s. It is easy to see that [š] := {[šN ]}N satisfies the
compatibility condition, hence lies in Γ(R, ȞF,Ω). Moreover,

∇Ω
V [šN ] = ∇Ω

V [ϕRN

((
e(F0−F)/tπ∗X(s)

))
] = [ϕRN

((
∂V +

∂V F
t
)(

e(F0−F)/tπ∗X(s)
))
] = 0.



36 CHANGZHENG LI, SI LI, AND KYOJI SAITO

Hence, the extension [š] of [s] is flat.

The map in (4.3) is given by the composition: H f ,Ω ⊗C RN
∼=→ HF0 ,Ω ⊗OS RN→HF,Ω ⊗OS RN ,

where the first map is the canonical isomorphism of RN-modules. The second map is defined
by sending [a] ⊗ r to [rϕRN (e

(F0−F)/ta)], which is also an isomorphism of RN-modules since its
inverse is constructed by multiplying e(F−F0)/t (whose details are left to the readers). �

Remark 4.8. Geometrically, the map e( f−F)/t can be considered as the local trivialization of ȞF,Ω with
respect to the Gauss-Manin connection.

Let L ⊂ H f ,Ω be an opposite filtration (see Defintion 2.16). Recall that

B := tL ∩H f ,Ω
(0)
∼= H f ,Ω

(0) /tH f ,Ω
(0)

is isomorphic to Jac( f ), and we have

H f ,Ω = H f ,Ω
(0) ⊕L

with

H f ,Ω
(0) = B[[t]], L = t−1B[t−1] and H f ,Ω = B((t)).

Lemma/Definition 4.9. Let L ⊂ H f ,Ω be an opposite filtration. We define an associatedR-module LR
by

LR := {LR(RN)}N with LR(RN) := e( f−F)/t(L⊗C RN),

using (4.3). The splittingH f ,Ω = H f ,Ω
(0) ⊕L induces a splitting of ȞF,Ω(RN),

(a) ȞF,Ω(RN) = ȞF,Ω
(0) (RN)⊕LR(RN)

for each RN , where

ȞF,Ω(RN) := HF,Ω ⊗OS RN and ȞF,Ω
(0) (RN) := HF,Ω

(0) ⊗OS RN .

TheR-submodule LR of ȞF,Ω further satisfies the following:

(b) t−1LR(RN) ⊂ LR(RN); (c) K̂F,N
Ω (LR(RN),LR(RN)) ⊂ t−2RN [t−1].

LR will be called the formal opposite filtration associated to the opposite filtration L.

The splitting (a) gives rise to a decomposition ofR-modules

ȞF,Ω = ȞF,Ω
(0) ⊕LR.

Consequently, every section s in Γ(R, ȞF,Ω) admits a unique splitting:

s = s+ ⊕ s−

with s+ ∈ Γ(R, ȞF,Ω
(0) ) and s− ∈ Γ(R,LR).
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Proof. To show (a), let {φ j} j,φ j ∈ B, represent a basis of Jac( f ). Let U ⊂ S be an open neighbor-
hood of the reference point 0 ∈ S, such that {π∗Xφ j} j remain representatives of a basis of p∗OC(F).
Let BF := SpanOS|U{π

∗
Xφ j} j ⊂ HF,Ω|U , which is isomorphic to B⊗C OS|U . It follows that there

are natural identifications

ȞF,Ω
(0) (RN) = BF[[t]]⊗OS RN , ȞF,Ω(RN) = BF((t))⊗OS RN

and e( f−F)/t(L⊗C RN) = e( f−F)/t(t−1B[t−1]⊗C RN). We only need to show that the composition
π− in the diagram

e( f−F)/t(L⊗C RN)

π− ))

// ȞF,Ω(RN)

��
t−1BF[t−1]⊗OS RN

is an isomorphism. Here we have to transform elements of the form e( f−F)/tb, b ∈ B into ele-
ments of the form BF((t))⊗C RN up to QF-exact term. Clearly, π− is RN [t−1]-linear, and it is an
isomorphism modulo the maximal ideal of RN . It follows that π− is an isomorphism. Thus (a)
holds.

Property (b) follows by construction.

To show (c), we only need to prove for the pairing on ϕRN (e
( f−F)/t(L ⊗C 1)) since K̂F,N

Ω is
RN-linear. Let s, s′ ∈ L ⊂ H f ,Ω, and š = {šN}, š′ = {š′N} be the formal flat extensions of s, s′

respectively. Let T be the OS-module OS((t)) with the natural flat connection. Then

{K̂F,N
Ω (šN , š′N)}N ∈ Γ(R, Ť)

Let V be a holomorphic vector field on S. ∂V is defined on Γ(R, Ť) by Lemma 4.3, and we will
denote by

{∂VK̂F,N
Ω (š, š′)}N := ∂V{K̂F,N

Ω (šN , š′N)}N

Since š, š′ are flat, we have

∂VK̂F,N
Ω (š, š′) = K̂F,N

Ω (∇Ω
V š, š′) + K̂F,N

Ω (š,∇Ω
V š′) = 0

for any V and N. Hence, K̂F,N
Ω (šN , š′N) ∈ C((t)) ⊂ RN((t)) for all N. This implies K̂F,N

Ω (šN , š′N) =
K̂Ω

F,1(š1, š′1) ∈ t−2C[t−1] under the natural identification of C ⊂ RN with C = R1. Thus (c) holds.

The splittings (a) satisfy the compatibility condition, so that they give rise to a splitting of
ȞF,Ω.

Given a section s = {sN}N in Γ(R, ȞF,Ω), we have a splitting sN = s+(RN) ⊕ s−(RN) in
ȞF,Ω

(0) (RN) ⊕ LR(RN) for every sN ∈ ȞF,Ω(RN). Clearly, both s+ := {s+(RN)}N and s− :=
{s−(RN)}N satisfy the compatibility condition, and hence we obtain a splitting of sections s =

s+ ⊕ s−. �
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Remark 4.10. The RN-components of the formal flat extensions e( f−F)/tL generate a RN-submodule of
ȞF,Ω(RN) which coincides with LR(RN). Hence, we do not distinguish them and simply denote both by
e( f−F)/tL⊗C RN .

Lemma 4.11. The non-extended Gauss-Manin connection ∇Ω preserves LR, i.e.

∇Ω : Γ(R,LR)→ Ω1
S ⊗OS Γ(R,LR).

Proof. Let s = {sN}N be a section in Γ(R,LR), and V be a local section of TS. Each sN is an
element in e( f−F)/tL ⊗C RN . Therefore we can write sN+1 = ∑iϕRN+1(e

( f−F)/t)ai ⊗C bi, where
ai ∈ L and bi ∈ RN+1 for all i. Since ϕRN (e

( f−F)/tai) is a flat extension of ai by Lemma 4.7, it
follows that

(∇Ω
V s)(RN) = ∑

i
ϕRN (e

( f−F)/tai)⊗CϕRN (∂V b̃i) ∈ LR(RN),

where b̃i ∈ OS is a lifting of bi for each i. �

4.2. Construction of formal primitive form.

Definition 4.12. An opposite filtration L ofH f ,Ω is called good if L is preserved by ∇Ω
t∂t

= t∂t − f
t .

Here∇Ω
t∂t

is the restriction of the extended Gauss-Manin connection to the central fiber, which
is a well-defined operator onH f ,Ω.

Definition 4.13. An element ζ0 ∈ H f ,Ω
(0) is called primitive with respect to a good opposite filtration L if

(1) (primitivity) the projection of ζ0 generates Jac( f ) = H f ,Ω
(0) /tH f ,Ω

(0) as Jac( f )-module;
(2) (homogeneity) ∇Ω

t∂t
ζ0 − rζ0 ∈ L for some constant r ∈ C.

We will describe all good opposite filtrations and primitive elements for weighted homogeneous
polynomials in next section.

Remark 4.14. The notion of a good section v : Jac( f )→ H f ,Ω
(0) in [46] coincides with the above notion

of a good opposite filtration L, under the identification v 7→ L := t−1v(Jac( f ))[t−1] (recall Lemma 2.16).
The notion of a primitive element was also described in [46] without introducing the terminology, where
it is generally expected that there exists a unique primitive element with respect to a given good opposite
filtration, up to a nonzero complex number.

Given an element ζ0 in H f ,Ω
(0) , we obtain a flat section e( f−F)/tζ0 in Γ(R, ȞF,Ω) by Lemma 4.7.

From this we obtain a unique splitting:

e( f−F)/tζ0 = ζ+ +ζ−(4.5)

with ζ+ ∈ Γ(R, ȞF,Ω
(0) ) and ζ− ∈ Γ(R,LR) by Lemma 4.9 .



PRIMITIVE FORMS VIA POLYVECTOR FIELDS 39

Theorem 4.15. Let L be a good opposite filtration of H f ,Ω and ζ0 be a primitive element of H f ,Ω
(0) with

respect to L. Then the section ζ+ ∈ Γ(R, ȞF,Ω
(0) ), given by the splitting (4.5), is a formal primitive form.

The converse is also true, i.e., a formal primitive form determines a unique good opposite filtration L
together with a unique primitive element ζ0 with respect to L.

Proof. We first prove that ζ+ is a formal primitive form for the given (L,ζ0).

We check the four conditions for defining a formal primitive form in Definition 4.6. For sim-
plicity, we will refer to the corresponding formulas in Definition 3.21, and simply use the nota-
tions ∇Ω and KF

Ω instead of ∇̌Ω and K̂F
Ω, respectively. Let R ∈ R.

(P1)∨ We need to show that

t∇Ωζ+(R) : TS ⊗OS R→ ȞF,Ω
(0) (R)/tȞF,Ω

(0) (R)

is an isomorphism of free R-modules. For any local section V of TS, by definition we have
[t∇Ω

Vζ+(R)] = [ϕR((∂V F)ζ̃+(R))] ∈ ȞF,Ω
(0) (R)/tȞF,Ω

(0) (R), where ζ̃+(R) ∈ HF,Ω
(0) is a lifting of

ζ+(R). That is, we have

t∇Ωζ+(R) : TS ⊗OS R→ p∗OC(F)ζ̃+(R)⊗OS R ⊂ ȞF,Ω
(0) (R)/tȞF,Ω

(0) (R) ∼= p∗OC(F) ⊗OS R.

Note that when R = OS,0/m ∼= C, ζ+(C) = ζ0 and the inclusion ⊂ is in fact an isomorphism due
to the primitivity of ζ0 (see Definition 4.13). In this case the arrow also becomes an isomorphism,
since the Kodaira-Spencer map (3.1) is an isomorphism. That is, t∇Ωζ+(C) is an isomorphism.
Hence, t∇Ωζ+(R) is an isomorphism of R-modules by Nakayama Lemma.

(P2)∨ Let V1, V2 be local sections of TS. Since e( f−F)/tζ0 is flat, we have

t∇Ω
V1
ζ+(R) = −t∇Ω

V1
ζ−(R).

Since t∇Ω
V1
ζ+(R) ∈ ȞF,Ω

(0) (R), and t∇Ω
V1
ζ−(R) ∈ tLR(R) by Lemma 4.11, we find

t∇Ω
V1
ζ+(R) ∈ ȞF,Ω

(0) (R) ∩ tLR(R).

By Lemma 4.9, we have

KF
Ω (-, -) : LR(R)⊗LR(R)→ t−2R[t−1].

Hence,

KF
Ω (-, -) :

(
ȞF,Ω

(0) (R) ∩ tLR(R)
)
⊗
(
ȞF,Ω

(0) (R) ∩ tLR(R)
)
→ R[[t]] ∩ R[t−1] = R,

where the value does not depend on t. In particular, the property in (P2)∨ holds:

KF
Ω

(
∇Ω

V1
ζ+(R),∇Ω

V2
ζ+(R)

)
∈ t−2R.

(P3)∨ Let V1, V2 be local sections of TS. The identity ∇Ω
V1
∇Ω

V2
ζ+(R) = −∇Ω

V1
∇Ω

V2
ζ−(R) implies

∇Ω
V1
∇Ω

V2
ζ+(R) ∈ t−2ȞF,Ω

(0) (R) ∩ LR(R) =
(
t−2ȞF,Ω

(0) (R) ∩ t−1LR(R)
)
⊕
(
t−1ȞF,Ω

(0) (R) ∩ LR(R)
)
.
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This implies the first property in (P3)∨:

KF
Ω

(
∇Ω

V1
∇Ω

V2
ζ+(R),∇Ω

V3
ζ+(R)

)
∈ t−3R⊕ t−2R.

For any [s] ∈ H f ,Ω, it is easy to see that

∇Ω
t∂t
[ϕR(e(F0−F)/tπ∗X(s))] = [ϕR(e(F0−F)/tπ∗X

(
(t∂t −

f
t
)s
)
)],(4.6)

the right hand side of which equals [ϕR(e(F0−F)/tπ∗X(∇Ω
t∂t

s))] by definition. In particular if [s] ∈
L ⊂ H f ,Ω, then ∇Ω

t∂t
[s] ∈ L (since L is a good opposite filtration). Consequently,

∇Ω
t∂t
[ϕR(e(F0−F)/tπ∗X(s))] ∈ LR(R).

That is, ∇Ω
t∂t

preserves LR(R). On the other hand ∇Ω
t∂t

: ȞF,Ω
(0) (R)→ t−1ȞF,Ω

(0) (R), it follows that

∇Ω
t∂t
∇Ω

V1
ζ+(R) = −∇Ω

t∂t
∇Ω

V1
ζ−(R) ∈ t−2ȞF,Ω

(0) (R) ∩ LR(R).

By the same arguments as above, the second property in (P3)∨ holds.

(P4)∨ First, let us observe that the operator∇Ω
t∂t

+∇Ω
E preservesHF,Ω

(0) . Indeed, by the definition
of the Euler vector field E, there exist gi ∈ Γ(Z,OZ), i = 1, · · · , n, such that F− ∂EF = ∑i gi∂zi F,
where we remind that a projection πX : Z→ X is fixed. Hence, as operators onHF,Ω, we have(

∇Ω
t∂t

+∇Ω
E
)
[s] = [

(
t∂t −

F
t
+ ∂E +

∂EF
t
)
(s)]

= [
(
t∂t + ∂E − t−1

∑
i

gi∂zi F
)
(s)] = [

(
t∂t + ∂E +∑

i
λ

∂

∂zi

gi

λ
+∑

i
gi

∂

∂zi

)
(s)],

where [s] denotes a local section ofHF,Ω, and which clearly preservesHF,Ω
(0) . Therefore,(

∇Ω
t∂t

+∇Ω
E
)
ȞF,Ω

(0) (R) ⊂ ȞF,Ω
(0) (R).

Similarly

(∇Ω
t∂t

+∇Ω
E )LR(R) ⊂ LR(R)

by (4.6) and Lemma 4.11. We find the decomposition(
(∇Ω

t∂t
+∇Ω

E )e
( f−F)/tζ0

)
(R) =

(
∇Ω

t∂t
+∇Ω

E

)
ζ+(R) +

(
∇Ω

t∂t
+∇Ω

E

)
ζ−(R) ∈ ȞF,Ω

(0) (R)⊕LR(R).

On the other hand, (
∇Ω

t∂t
e( f−F)/tζ0

)
(R)− r

(
e( f−F)/tζ0

)
(R) ∈ LR(R)

which follows from (4.6) and the homogeneity of ζ0. It leads to another decomposition(
(∇Ω

t∂t
+∇Ω

E )e
( f−F)/tζ0

)
(R) =

(
∇Ω

t∂t
e( f−F)/tζ0

)
(R) ∈ r(e( f−F)/tζ0)(R)+LR(R) = rζ+(R)+LR(R).

By the uniqueness of the splitting of
(
(∇Ω

t∂t
+∇Ω

E )e
( f−F)/tζ0

)
(R), we find(

∇Ω
t∂t

+∇Ω
E

)
ζ+(R) = rζ+(R).
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In addition, it is easy to see the all (P2)∨, (P3)∨ and (P4)∨ above satisfy the compatibility condition
with respect to the inverse systemR. Hence, ζ+ is a formal primitive form.

Conversely, let ζ+ be a formal primitive form. Let B(R) be the image of the map

t∇Ωζ+(R) : TS ⊗OS R→ ȞF,Ω
(0) (R), V → t∇Ω

Vζ+(R),

which is a R-submodule of ȞF,Ω
(0) (R). Then we have ȞF,Ω(R) = B(R)((t)) and ȞF,Ω

(0) (R) =

B(R)[[t]]. Define LR(R) := t−1B(R)[t−1] ⊂ ȞF,Ω(R). It is easy to check (by reversing the above
argument) that LR(R) defines a sub R-module of ȞF,Ω which is preserved by the Gauss-Manin
connection. Then L := LR(C) defines a good opposite filtration of H f ,Ω (by using (P2)∨, (P3)∨),
and we obtain a primitive elementζ0 := ζ+(C) with respect to such L (by using (P1)∨, (P4)∨). �

Corollary 4.16. Let L be a good opposite filtration and ζ0 be a primitive element with respect to L. Then
there is a unique section η in Γ(R, ȞF,Ω

(0) ) satisfying

e(F− f )/tη(R) ∈ ζ0 ⊗C 1 + L⊗C R

for all R ∈ R. Furthermore, such η is precisely given by the formal primitive form ζ+ defined in (4.5).

The above corollary provides a convenient way to compute the primitive form in practice. In
particular, this leads to our algorithm in Section 5.4 and is used in Section 6 to compute primitive
forms for explicit examples.

4.3. Analyticity. We have constructed the formal primitive form in the formal neighborhood of
the universal unfolding with respect to the choice of a good opposite filtration together with a
primitive element. In fact, more is true: the formal primitive form as constructed in Theorem 4.15
extends to certain analytic neighborhood. This follows from the comparison between the formal
construction and the original analytic construction by the third author, as described below.

Consider the natural map

p∗Ωn
Z/S/dF ∧ d

(
p∗Ωn−2

Z/S

)
→ HF,Ω

(0) , [ξ ]→ [
ξ

ΩZ/S
].

There is a canonical filtration on the left hand side defined by the power of the operator ∇−1
δ

in [46], which coincides with the filtration HF,Ω
(−k) on the right hand side under the above map.

Actually, there are also the Gauss-Manin connection and the higher residue pairing defined on
the left hand side, with which the above map is equivariant. Such map becomes an isomorphism
if we take the formal completion of the left hand side with respect to the above filtration [45].

The space p∗Ωn
Z/S/dF ∧ d

(
p∗Ωn−2

Z/S

)
is sometimes called the Brieskorn lattice, which has a

purely analytic nature. The original primitive form is formulated as an analytic object inside
this space satisfying the same properties, where the notion of good opposite filtrations L which
we used here is identified with the notion of good sections v (see Remark 4.14) and the primitive
element was similarly described. It was shown in [46] on the correspondence between primitive
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forms and good sections, and the analyticity of the primitive form was proved via solving a ver-
sion of Riemann-Hilbert-Birkhoff problem. The construction we provide in the present paper is
the formulation of this correspondence in the formal setting. In particular, we have the maps

{analytic primitive forms} //

��

{formal primitive forms}

��
{good sections} {good opposite filtrations}

Here the vertical maps are fibered by the primitive elements, and the top row is defined by
restriction to the formal neighborhood. It follows that the top row is in fact an bijection. As a
consequence, we have

Theorem 4.17. Let L be a good opposite filtration and ζ0 be a primitive element with respect to L. Then
the inverse limit of the formal primitive formζ+ defined in (4.5) is the Taylor series expansion of an analytic
primitive form.

The reason we use the formal setting is that the explicit formula e( f−F)/t allows us to compute
the Taylor series expansion of the primitive form up to arbitrary finite order. In the next section
we will study the moduli space of primitive forms for all all weighted homogeneous polynomial,
and provide an explicit computation algorithm for the primitive forms.

5. PRIMITIVE FORMS FOR WEIGHTED HOMOGENEOUS POLYNOMIALS

In this section, we will present applications of Theorem 4.15 when f is a weighted homoge-
neous polynomial. We will describe the moduli space of all primitive forms. In addition, we will
provide a concrete algorithm to compute the Taylor series expansions of primitive forms up to
an arbitrary order.

5.1. Weighted-homogeneity. A polynomial f : (Cn, 0)→ (C, 0) is called a weighted homogeneous
polynomial (of total degree 1) with weights (q1, · · · , qn), where each qi is a rational number with
0 < qi ≤ 1

2 , if f (λq1 z1, · · · , λqn zn) = λ f (z1, · · · , zn) holds for all λ ∈ R>0. The rational numbers
q1, · · · , qn are called weight degrees. It defines the weight degree for polynomials by assigning
deg zi = qi. In particular, deg f = 1.

Remark 5.1. Since ∑
n
i=1 qizi∂zi f = f , f belongs to its Jacobian ideal (∂z1 f , · · · , ∂zn f ). In fact, more

is true: a holomorphic function-germ g : (Cn, 0) → (C, 0), with 0 being an isolated critical point, is
analytically equivalent to a weighted homogeneous polynomial if and only if g belongs to its Jacobian ideal
[41].

Throughout this section, we will fix one such f . Let

s( f ) :=
n

∑
i=1

(1− 2qi) ,(5.1)
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which was introduced in [42] to classify weighted homogenous polynomials f satisfying 0 <

s( f ) ≤ 1. The invariant s( f ) sometimes borrows the name central charge since it coincides with
the notion in the superconformal field theory associated to the Landau-Ginzburg model defined
by f .

Example 5.2 (Calabi-Yau hypersurface). Every weighted homogenous polynomial f (z1, · · · , zn) with
∑

n
i=1 qi = 1 defines a Calabi-Yau hypersurface f = 0 in the weighted projective space Pq1 ,··· ,qn , whose

dimension is equal to s( f ) = n− 2.

Let {φ1, · · · ,φµ} be a set of weighted homogeneous polynomials that represent a basis of
Jac( f ) with degφ1 ≤ degφ2 ≤ · · · ≤ degφµ. As a well-known fact, we have 0 = degφ1 <

degφi < degφµ = s( f ) for any 1 < i < µ, and

degφi + degφ j = s( f ) whenever i + j = µ + 1.

Take Z ⊂ X × S ⊂ Cn ×Cµ with S ⊂ Cµ a (small) Stein domain containing the origin, such
that the holomorphic function F : Z→ C, defined by

F(z, u) = f (z) +
µ

∑
j=1

u jφ j(z),(5.2)

is a universal unfolding. Then (Z, S, p, F) is a frame (see Definition 3.1). We will extend the
weight degree to deformation parameters

deg u j := 1− degφ j(5.3)

for each j. F becomes a weight-homogeneous polynomial in (z, u),(
n

∑
i=1

qizi∂zi +
µ

∑
j=1

(deg u j)u j∂u j

)
F = F.

As a consequence, the Euler vector field (defined by (3.3)) is given by

E =
µ

∑
j=1

(deg u j)u j∂u j .(5.4)

We will discuss primitive forms for weighted homogeneous polynomials f with respect to (Z, S, p, F)
and the choice

ΩZ/S := dz1 ∧ · · · ∧ dzn.

Now we briefly review a partial classification of weighted homogeneous polynomials (of total
degree 1). Two function-germs g1 : (Cn, 0) → (C, 0) and g2 : (Cm, 0) → (C, 0) are called sta-
bly equivalent if g1(z1, · · · , zn) + z2

n+1 + · · ·+ z2
k and g2(z̃1, · · · , z̃m) + z̃2

m+1 + · · ·+ z̃2
k define the

same function-germ (Ck, 0) → (C, 0) for some k ≥ max{m, n} up to a local analytic coordinate
transformation. By Proposition 3.28, it is sufficient to deal with f up to stable equivalence. The
classification of f , which was started by V.I. Arnold, is still open in general. However, the case
of s( f ) ≤ 1 was already completely classified. For s( f ) < 1, there are in total 5 lists of f , which
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are called simple singularities [1] or ADE-singularities; for s( f ) = 1, there are in total 3 lists, which
are called simple elliptic singularities in [42]. Among those weighted homogeneous polynomials
satisfying 1 < s( f ) < 2, there are 14 polynomials (in three variables) named exceptional uni-
modular singularities of type E12, E13, E14, Z11, Z12, Z13, W12, W13, Q10, Q11, Q12, S11, S12 and U12

respectively [1]. The degrees of the weighted homogeneous basis for these 14 polynomials are
given by

(5.5) degφi =
mi − a− b− c

h
+ 1

with a, b, c, h and the exponent mi read off directly from Table 3 of [47].

5.2. A grading operator. We can adapt the weight degrees to polyvector fields.

Definition 5.3. Define an operator E f : PV(X)((t))→ PV(X)((t)), by

E f := t∂t +
n

∑
i=1

qi
(
zi∂zi − z̄i∂z̄i

)
+

n

∑
i=1

(
(1− qi)∂i ∧

∂

∂∂i
− qidz̄i

∂

∂dz̄i

)
,

where the operator ∂

∂dz̄i
is defined similarly to ∂

∂∂i
.

Clearly, E f perserves PVc(X)((t)).

We may formally treat t (resp. z̄i, ∂i, dz̄i) as of weight degree 1 (resp. −qi, 1− qi, −qi). Then
the differential Q f is an operator of weight degree 0 on PV(X)((t)). The next lemma becomes a
trivial consequence of this observation.

Lemma 5.4. The operator E f commutes with the coboundary operator Q f (recall (2.6)).

It follows that E f is well defined on the cohomologyH f ,Ω, and it induces a Q-grading onH f ,Ω
(0)

andH f ,Ω. Classes inH f ,Ω are represented by elements in Γ(X,OX)[[t]], for which

E f (htk) =
(
t∂t +∑

i
qizi∂zi

)
(htk), where h ∈ Γ(X,OX).

The Q-grading is just the weight degree of the representatives. In the following discussions, we
will always assume the extended weight degree assignments

deg zi = qi, deg u j = 1− degφ j, deg t = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ µ.

Recall that the higher residue R̂es f is defined by (2.14).

Proposition 5.5. The higher residue map R̂es f : H f ,Ω
(0) → C[[t]] is homogeneous of weight degree−s( f ):

if degα = m, then deg(R̂es f (α)) = m− s( f ).

Proof. This follows from a direct calculation on integration by part and we leave it to the reader.
�
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The next corollary is a direct consequence of the above proposition

Corollary 5.6. The higher residue pairing K f
Ω (-, -) : H f ,Ω

(0) ⊗H
f ,Ω
(0) → C[[t]] is of weight degree −s( f ).

The higher residue map R̂es
f

induces a map on the associated graded vector space of the
Hodge filtration, the restriction of which to H f ,Ω

(0) /H
f ,Ω
(−1) = Jac( f ) coincides with the usual

residue map by Proposition 2.5. As a direct consequence of Proposition 5.5, we reprove the
next well-known fact.

Corollary 5.7. The residue Res : Jac( f )→ C is only non-zero at the weighted homogeneous component
of (top) weight degree s( f ) in Jac( f ).

The grading operator E f on PV(X)((t)) is naturally extended to the universal unfolding

EF := E f +
µ

∑
j=1

(deg u j)
(
u j∂u j − ū j∂ū j − dū j

∂

∂dū j

)
,

which acts on PV(Z/S)((t)) and commutes with QF. Hence, EF acts on HF,Ω
(0) , and induces a

Q-grading on it. As a family version of Proposition 5.5, we have

Proposition 5.8. The higher residue map R̂es
F

: HF,Ω
(0) → OS[[t]] is of weight degree −s( f ).

Proof. This follows from the homogeneity of the choice of the holomorphic form ΩZ/S = dz1 ∧
· · · ∧ dzn and a similar calculation on integration by part. �

Corollary 5.9. The higher residue pairingKF
Ω (-, -) : HF,Ω

(0) ⊗H
F,Ω
(0) → OS[[t]] is of weight degree−s( f ).

Proposition 5.10. A section [η] ∈ Γ(S,HF,Ω
(0) ) satisfies property (P4) of Definition 3.21 if and only if [η]

is weighted homogeneous with respect to the Q-grading induced by EF.

Proof. Write η =
∞
∑

j=0
a jt j, a j ∈ Γ(Z,OZ). Modulo the coboundary operator QF, we have

−
(

∑
i

qizi∂zi F

)
η ≡ t ∑

i
qizi∂ziη+ t

(
∑

i
qi

)
η mod Im(QF).

Hence, (
∇Ω

t∂t
+∇Ω

E
)
[η] = [

(
t

∂

∂t
− F

t
+ ∂E +

∂EF
t
)
η]

=[
(
t

∂

∂t
+ ∂E −

1
t
( n

∑
i=1

qizi∂zi F
))
η] = [

(
t

∂

∂t
+ ∂E +∑

i
qizi∂zi +∑

i
qi
)
η]

=[∑
q

(
t

∂

∂t
+ ∂E +∑

i
qizi∂zi

)
η+

(
∑

i
qi
)
η] = [EFη+

(
∑

i
qi
)
η].

Hence, property (P4) holds if and only if EF[η] = (r−∑i qi)[η], i.e., [η] is weighted homogeneous
of degree r− ∑i qi. �
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5.3. Moduli space of primitive forms. As we have shown in the previous section, a primitive
form in Γ(S,HF,Ω

(0) ) is equivalent to a good opposite filtration L ofH f ,Ω together with a primitive
element with respect to L.

Proposition 5.11. Let L ⊂ H f ,Ω be an opposite filtration. The following are equivalent:

(1) L is good; (2) E f preserves L; (3) E f preservesH f ,Ω
(0) ∩ tL.

Furthermore, 1 ∈ H f ,Ω
(0) is the unique primitive element with respect to a given good opposite filtration,

up to a scalar multiple by nonzero complex numbers.

Proof. Denote r := ∑i qi. For any [η] ∈ H f ,Ω
(0) , we have

∇Ω
t∂t
[η] = [

(
t∂t −

f
t
)
η] = [

(
t∂t −∑

i

qizi∂zi f
t

)
η] = [

(
r + t∂t +∑

i
qizi∂zi

)
η] =

(
r +E f

)
[η].

Hence, L is good if and only if E fL ⊂ L, which holds if and only if E f preserves B := H f ,Ω
(0) ∩ tL

(since L = t−1B[t−1] and E fH
f ,Ω
(0) ⊂ H

f ,Ω
(0) ).

Since ζ0 ∈ H f ,Ω
(0) is primitive only if ζ0 is a weighted homogenous element (of degree zero)

such that Jac( f )ζ0 = Jac( f ), the latter statement follows. �

We now construct all good opposite filtrations for any given weighted homogeneous singu-
larity. The method is a generalization of the classical construction of the flat coordinates for
the case of finite reflection group quotient [49], by including the parameter t. Let us fix one set
{φ1, · · · ,φµ} ⊂ C[z] of weighted homogeneous polynomials such that

(1) {φ1, · · · ,φµ} represent a basis of Jac( f ).
(2) degφ1 < degφ2 ≤ · · · ≤ degφµ−1 < degφµ, andφ1 = 1.
(3) The residue pairing (φi,φ j) is zero unless i+ j = µ+ 1, which implies that each (φi,φµ+1−i)

is nonzero due to the non-degeneracy of the residue pairing.

Let
r(i, j) := degφi − degφ j.

Whenever referring to an element c =
(
ci j
)

1≤i, j≤µ ∈ Cµ2
below, we always require ci j = 0 unless

r(i, j) ∈ Z>0. For such c, we set

B(c) := SpanC{Φ1(c), · · · , Φµ(c)} ⊂ H f ,Ω
(0)

with

Φi = Φi(c) := φi +
i−1

∑
j=1

ci jφ jtr(i, j).

Let
Y := {c ∈ Cµ2 | K f

Ω

(
B(c), B(c)

)
⊂ C, ci j = 0 if r(i, j) /∈ Z>0} ⊂ Cµ2

.
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Proposition 5.12. There is a bijection map

Y
∼=−→ {good opposite filtrations ofH f ,Ω}

defined by c ∈ Y 7→ L(c) := t−1B(c)[t−1].

Proof. For any c ∈ Y, we have K f
Ω(B(c), B(c)) ⊂ C. Moreover, it follows by construction that

H f ,Ω
(0) = B(c)[[t]], H f ,Ω = B(c)((t)) = H f ,Ω

(0) ⊕ L(c) and t−1L(c) ⊂ L(c). Hence, L(c) is an op-
posite filtration (recall Definition 2.16). Clearly, B(c) is preserved by E f , since {Φ j} are weighted
homogeneous with respect to E f . Therefore L(c) is good by Proposition 5.11, and the given map
is defined. The injectivity of such map follows from the linear independence of {φ1, · · · ,φµ} in
H f ,Ω.

Now we assume L to be a good opposite filtration of H f ,Ω and let B := H f ,Ω
(0) ∩ tL. Then

we have K f
Ω(B, B) ⊂ C by definition, and E f preserves B by Proposition 5.11. It follows that

B = B(c) for some c ∈ Y. That is, the given map is surjective. �

Let Zodd
>0 be the set of positive odd integers, and set

D := ]{(i, j) | r(i, j) ∈ Z>0, i + j < µ + 1}+ ]{(i, j) | r(i, j) ∈ Zodd
>0 , i + j = µ + 1}.

Proposition 5.13. Y is an algebraic subvariety of Cµ2
defined by quadratic equations, which is biregular

to CD. In particular if D = 0, then Y = {0} consists of the origin of Cµ2
only.

Proof. For 1 ≤ i, j ≤ µ, we let ai j(t) := K f
Ω(φi,φ j). We also let di j(t) := ci jtr(i, j) if r(i, j) ∈ Z>0, or

1 if i = j, or 0 otherwise. It follows from Corollary 5.6 that every ai j(t) is a monomial in C[t] of
degree degφi + degφ j − s( f ). Our assumption on {φi} implies that ai j(t) = 0 if i + j < µ + 1,

and ai j(t) is a nonzero constant if i + j = µ + 1. Since Φi =
i
∑

k=1
dik(t)φk, the pairing

K f
Ω(Φi, Φ j) =

0, if i + j < µ + 1

= ai j ∈ C∗, if i + j = µ + 1
.

By the skew-symmetric property of the higher residue pairing, c ∈ Y if and only if all the mono-
mials K f

Ω(Φi, Φ j′) are constant functions for those entries (i, j′) with i ≤ j′ and i + j′ > µ + 1.

Write j′ = µ + 1− j. The condition is equivalent to that K f
Ω(Φi, Φµ+1− j) is a constant for all i, j

with i − j > 0 and i ≤ µ + 1− j. Namely the monomial Ki j := K f
Ω(Φi, Φµ+1− j) in t of degree

r(i, j) satisfies

Ki j = di, j(t)a j,µ+1− j + ai,µ+1−idµ+1− j,µ+1−i(−t) + ∑
j<k≤i

µ+1−i<l≤µ+1− j

dik(t)akl(t)dµ+1− j,l(−t) ∈ C.

Let us refer to k− l as the step of a coordinate ckl . Then Ki j contains precisely two (possibly the
same) coordinates ci j, cµ+1− j,µ+1−i of step i − j, and other coordinates of step strictly less than
i− j. We analyze the constraints Ki j ∈ C according to r(i, j) = r(µ + 1− j,µ + 1− i) as follows.
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Assume r(i, j) /∈ Z or r(i, j) = 0. Then Ki j ∈ C is a trivial condition.

Assume r(i, j) ∈ Z>0 and i < µ + 1− j, then the parameter cµ+1− j,µ+1−i (which is of step i− j
with (µ+ 1− j) > µ+ 1− (µ+ 1− i)) is uniquely determined by the free parameter ci j ∈ C and
those ck′ ,l′ with smaller steps.

Assume r(i, j) ∈ Z>0 and i = µ + 1 − j. Then K f
Ω(Φi, Φµ+1− j) = K f

Ω(Φi, Φi) is an even
function in t by the skew-symmetric property of the higher residue pairing. Thus if r(i, j) is odd,
the pairing must vanish. In this case, LHS ∈ C is a trivial condition with a free parameter ci j

of the largest step. If r(i, j) is even, then ci j is uniquely determined by the summation in LHS,
which involves coordinates of step strictly less than i− j only.

In summary, there are precisely D free parameters. In particular if D = 0, then ci j = 0 unless
r(i, j) is a positive even integer and i = µ + 1− j. However, such ci j is equal to a summation of
quadratic terms in coordinates of step strictly less than i− j, which are equal to zero. Hence, we
have ci j = 0 for all i, j. That is, c = 0 if D = 0. Hence, the statement follows. �

We say two primitive forms ζ1, ζ2 of HF,Ω
(0) are equivalent, denoted as ζ1 ∼ ζ2, if there exists

λ ∈ C∗ and open neighborhood U ⊂ S of 0 such that ζ1|U = λζ2|U ∈ Γ(U,HF,Ω). Let

M := {primtive forms ofHF,Ω
(0) }/ ∼ .

Theorem 5.14. There is a bijection map Y
∼=→M, inducing a bijection mapM

∼=→ CD.

Proof. By using Theorem 4.15, Theorem 4.17 and Proposition 5.11, we obtain a bijection between
M and the set of good opposite filtrations of H f ,Ω. The first statement follows from Proposition
5.12, and the second statement follows from Proposition 5.13. �

Corollary 5.15. When D = 0, the representatives of any two weighted homogeneous bases of Jac( f ) span
the same vector subspace B inH f ,Ω. This defines the unique good opposite filtration ofH f ,Ω by

Lcan = t−1B[t−1].

If f is given by one of the exceptional unimodular singularities, then there exists a unique primitive
form ζ+, up to a scalar of nonzero complex numbers. Furthermore, the Taylor expansion of ζ+ up to order
N − 1 is given by the projection of the element [ϕRN (e

F0−F
t )] in HF,Ω ⊗OS RN = (HF,Ω

(0) ⊗OS RN) ⊕(
e

f−F
t Lcan ⊗C RN

)
to HF,Ω

(0) ⊗OS RN , where RN = OS,0/m
N , and ϕRN : OS,0 → RN is the natural

projection.

Proof. By Proposition 5.12, there is a unique good opposite filtration L(0) = 0 = t−1B(0)[t−1]

with respect to the choice B = SpanC{φ1, · · · ,φµ}. Let B′ be spanned by {φ′1, · · · ,φ′µ} ⊂
Γ(X,OX), which represent another basis of Jac( f ) with degφ′1 ≤ · · · degφ′µ = s( f ). It follows
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from Proposition 5.12 again that L′(0) = t−1B′(0)[t−1] is the unique good opposite filtration.
Hence, L′(0) = L(0) by the uniqueness, implying B′ = B.

Now we consider the case when f is given by one of the exceptional unimodular singularities.
All the degrees degφi can be read off directly from Table 3 of [47] by using equality (5.5). It
follows that degφi + degφ j − s( f ) is not an integer unless it vanishes, by direct calculations.
Hence, we have D = 0, and therefore Y = {0}. Then the statement follows immediately from
Theorem 5.14, Theorem 4.15 and Theorem 4.17. �

5.4. The perturbative formula of a primitive form. Let {φ1, · · · ,φµ} ⊂ C[z] be a set of weighted
homogeneous polynomials as in the previous subsection, which represent a basis of Jac( f ). As
we have seen, a point c ∈ Y corresponds to a good opposite filtration L(c) of H f ,Ω, and hence a
unique primitive form ζ+ of HF,Ω

(0) with respect to L(c) together with the primitive element 1. In
this subsection, we provide an explicit algorithm to compute ζ+, up to an arbitrary finite order
N.

Let R = C[u]/mN+1. Consider the natural projection πX : Z ⊂ X× S→ X. The map

e
F− f

t : HF,Ω
(0) ⊗OS R −→ H f ,Ω ⊗C R = B((t))⊗C R

(which is the inverse of (4.3) in Lemma 4.7) defines a µ ×µ matrix A(u, t, t−1) valued in R, by

e
F−F0

t


π∗XΦ1

...
π∗XΦµ

 = A(u, t, t−1)


Φ1

...
Φµ

 .

Here we treat Φi = Φi(c) and π∗XΦi as elements inH f ,Ω ⊗C R andHF,Ω ⊗OS R, respectively. Let

a := max {[N(s( f )− 1) + s( f )], [s( f )]}

where by [r] we mean the largest integer that is less than or equal to r. It follows from degree
reason that

A(u, t, t−1) =
∞
∑

k=−∞ tk A(k)(u) =
a

∑
k=−N

tk A(k)(u)

where every A(k) (k 6= 0) is a µ × µ matrix with entries in m/mN+1; so is A(0) − Id. As a matrix
valued in R, A(k) is zero whenever k > a or k < −N.

We consider the following (a + 1)µ × (a + 1)µ matrix

Ψ :=


A(0) − Id A(1) · · · A(a)

A(−1) A(0) − Id · · · A(a−1)

· · · · · · · · · · · ·
A(−a) A(−a+1) · · · A(0) − Id


and the 1× (a + 1)µ matrix

e := (1, 0, · · · , 0) .
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Theorem 5.16. The first N + 1 terms of the Taylor series expansion of the primitive form ζ+ around the
reference point 0 is given by

ζ+(R) =
a

∑
i=0

ti~g(i)


Φ1

...
Φµ


where

(~g(0),~g
(1), · · · ,~g(a)) = e

N

∑
k=0

(−1)kΨk.

Proof. Let L = t−1B(c)[t−1]. By Corollary 4.16, the hypothesis

ϕR(e
F− f

t η) ∈ 1 + L⊗C R

admits a unique solution given by the primitive form η = ζ+(R) constructed with respect to L.
Since {π∗XΦi}i are a basis ofHF,Ω ⊗OS R, we can write

ζ+(R) =
µ

∑
i=1

giΦi, where gi = gi(u, t) ∈ C[[t]]⊗C R.

Since ζ+(R) is of weight degree zero,

(g1, · · · , gµ) =: ~g =
a

∑
k=0

~g(k)tk,

where each ~g(i) is a 1×µ matrix with entries in R. Therefore, we have

(g1, g2, · · · , gµ)
a

∑
k=−N

tk A(k) = (1 + h1, h2, · · · , hµ)

for some h j = h j(u, t) ∈ t−1C[t−1] ⊗C R, j = 1, 2, · · · ,µ. Equivalently, we have the system of
equations:

(~g(0),~g
(1), · · · ,~g(a))


A(0) A(1) · · · A(a)

A(−1) A(0) · · · A(a−1)

· · · · · · · · · · · ·
A(−a) A(−a+1) · · · A(0)

 = e

Since

1 + Ψ =


A(0) A(1) · · · A(a)

A(−1) A(0) · · · A(a−1)

· · · · · · · · · · · ·
A(−a) A(−a+1) · · · A(0)


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and Ψ is a matrix with entries in m/mN+1, we have

(1 + Ψ)−1 =
N

∑
k=0

(−Ψ)k.

Thus the statement follows. �

6. EXAMPLES

In this section, we provide some concrete examples of primitive forms. Whenever a good
opposite filtration L is specified below, we always consider the unique primitive form associated
to L together with the primitive element 1.

6.1. ADE-singularities. Let f be a weighted homogeneous polynomial of type ADE-singularity.
That is, s( f ) < 1. It is easy to see that D = 0, Y = {0}. As a consequence, Lcan is the only good
opposite filtration that is given by Y, which consists elements of negative weight degrees. Here
we only refer to the degree of the variables zi, t. Therefore deg ((F− F0)/t) < 0. It follows that

e(F−F0)/t ∈ 1 + Lcan ⊗C R

The next proposition [46] follows from Corollary 4.16.

Proposition 6.1. The element 1 ∈ Γ(S,HF,Ω
(0) ) is the unique primitive form up to a nonzero scalar.

6.2. Simple elliptic singularity. Let f = 1
3

(
z3

1 + z3
2 + z3

3

)
. Then f is a weighted homogeneous

polynomial with s( f ) = 1. It is called a simple elliptic singularity of type E(1,1)
6 . Take a (ordered)

monomial basis by

{φ1, · · · ,φ8} = {1, z1, z2, z3, z1z2, z2z3, z3z1, z1z2z3},

and consider the universal unfolding

F =
1
3

z3
1 +

1
3

z3
2 +

1
3

z3
3 +σφ8 +

7

∑
i=1

uiφi,

where (u1, · · · , u7,σ) are the local coordinates of S. We take ΩZ/S = dz1 ∧ dz2 ∧ dz3.

By definition, D = 1, and hence Y ∼= C. There is only one free parameter in c = (ci j), say c.
We have

L(c) = t−1B(c)[t−1] where B(c) = SpanC {φ1, · · · ,φ7,φ8 + ct} ⊂ H f ,Ω
(0) .

Every u j in F belongs to the maximal ideal of R. By Corollary 4.16, the associated primitive
form ζ+(R) ∈ HF,Ω(R) is determined by the relation

e(F− f )/tζ+(R) ∈ 1 + L(c)⊗C R.
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Lemma 6.2. As elements inH f ,Ω, the class eσφ8/t is well-defined (φ8 = z1z2z3), and it is given by

eσφ8/t = g(σ) + t−1h(σ)φ8,

where g(σ) and h(σ) are respectively given by

g(σ) = 1 +
∞
∑
r=1

(−1)rσ3r
∏

r
j=1(3 j− 2)3

(3r)!
, h(σ) = σ +

∞
∑
r=1

(−1)rσ3r+1
∏

r
j=1(3 j− 1)3

(3r + 1)!
.

Furthermore, g(σ), h(σ) are the fundamental solutions to the following Picard-Fuchs equation:

(6.1)
(
(1 +σ3)∂2

σ + 3σ2
∂σ +σ

)
ν(σ) = 0.

Proof. Note Q f (z2
2z2

3∂1) = (∂z1 f )z2
2z2

3 = z2
1z2

2z2
3 = φ2

8. That is, [φ2
8] = [0] in H f ,Ω. Similarly, for

k ≥ 3, it follows from direct calculations that

[φk
8] = [zk−2

1 zk
2zk

3∂z1 f ] = [−t(k− 2)zk−3
1 zk

2zk
3] = · · · = [−t3(k− 2)3φk−3

8 ]

Hence, inH f ,Ω we have

eσφ8/t =
∞
∑
k=0

σkφk
8

k!tk =
∞
∑
r=0

σ3rφ3r
8

(3r)!t3r +
∞
∑
r=0

σ3r+1φ3r+1
8

(3r + 1)!t3r+1 = g(σ) + t−1h(σ)φ8.

It is easy to check that g, h satisfy the differential equation (6.1). Since g, h are linearly inde-
pendent, they are the fundamental solutions. In particular, they are convergent. �

As a consequence, inH f ,Ω, the class

e(F−F0)/t − (g(σ) + t−1h(σ)φ8) = e
σφ8

t (e(F−F0−σφ8)/t − 1)

consists of elements of negative degree (viewed as elements inH f ,Ω), and hence lies inL(c)⊗C R.
Therefore e(F−F0)/t − (g(σ)− c · h(σ)) ∈ L(c)⊗C R. Then for ζ+(R) := 1

g(σ)−c·h(σ) ∈ H
F,Ω
(0) ⊗OS R,

we have
e(F− f )/tζ+(R) ∈ 1 + L(c)⊗C R.

It follows that

ζ+(R) =
1

g(σ)− c · h(σ)
is a primitive form by Corollary 4.16.

The above hypergeometric equation (6.1) is precisely the Picard-Fuchs equation for period
integrals on elliptic curves. Consider the elliptic curve Eσ ⊂ P2 defined by the equation f +
σz1z2z3 = 0, with holomorphic top form

ΩEσ = Res
z1dz2dz3 − z2dz1dz3 + z3dz1dz2

f +σz1z2z3

where Res : Ω2
P2(Eσ ) → Ω1

Eσ denotes the residue map. Let Γ be a topological 1-cycle in Eσ , then
the period integral

∫
Γ ΩEσ satisfies the Picard-Fuchs equation (6.1) In particular, an arbitrarily
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fixed basis {Γ1, Γ2} of H1(Eσ ,Z) gives gives the fundamental solutions
∫
Γ1
ΩEσ ,

∫
Γ2
ΩEσ to the

Picard-Fuchs equation. Hence, we reprove the next proposition [46].

Proposition 6.3. ζ ∈ Γ(S,HF,Ω
(0) ) is a primitive form if and only if

ζ =
1

a
∫
Γ1
ΩEσ + b

∫
Γ2
ΩEσ

for some (a, b) ∈ C∗ ×C.

6.3. E12-singularity. The exceptional singularity of type E12 is given by the weighted homoge-
neous polynomial:

f (x, y) = x3 + y7.

with s( f ) = 22
21 . Take the (ordered) set

{φ1, · · · ,φ12} := {1, y, y2, x, y3, xy, y4, xy2, y5, xy3, xy4, xy5} ⊂ C[x, y],

which represent a basis of Jac( f ). Consider the universal unfolding

F(x, y, u) = x3 + y7 +
12

∑
i=1

uiφi

and take ΩZ/S = dx ∧ dy. In this case, Y = {0} by Theorem 5.14. That is, there is a unique
primitive form up to a nonzero scalar. Hence, Φ j = φ j for all 1 ≤ j ≤ 12. As an example of
Theorem 5.16, we compute ζ+(R) with R = C[x, y]/m11 where m = (x, y) is the maximal ideal at
the origin.

By direct calculations (with a computer), we have

ζ+(R) = 1 +
4

3 · 72 u11u2
12 −

64
3 · 74 u2

11u4
12 −

76
32 · 74 u10u5

12 +
937

33 · 75 u9u6
12 +

218072
34 · 5 · 76 u3

11u6
12

+
1272169
34 · 5 · 77 u10u11u7

12 +
28751
34 · 77 u8u8

12 −
1212158

34 · 78 u9u11u8
12 −

38380
33 · 78 u7u9

12

+
( 1

72 u3
12 −

101
5 · 74 u11u5

12 +
1588303
34 · 5 · 77 u2

11u7
12 +

378083
34 · 5 · 77 u10u8

12 −
108144
3 · 78 u9u9

12
)
x

+
( 1447

33 · 76 u7
12 −

71290
33 · 78 u11u9

12
)

y− 45434
34 · 78 u10

12xy

−
( 53

32 · 74 u6
12 −

46244
33 · 77 u11u8

12
)
x2 +

22054
34 · 77 u9

12x3

Remark 6.4. For exceptional unimodular singularities, the first few orders of the primitive forms are
sufficient to establish the LG-LG mirror symmetry between their Saito-Givental theory (LG B-model) and
their mirror FJRW theory (LG A-model) [32].
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6.4. Mirror of P1. Consider the mirror Landau-Ginzburg model (X, f ) of the complex projective

line P1. Here X = C∗ and the superpotential f : X → C is given by f (z) = z +
q
z

, where q is

a nonzero constant in C∗. The quantum cohomology ring QH∗(P1,C) of P1 is isomorphic to the
Jacobian ring Jac( f ) = C[z, z−1]/〈z ∂ f

∂z 〉 of f . We will consider the Milnor fibration (Z, S, p, F),
where Z = C∗ ×C2, S = C2 and the universal unfolding is given by

F(z, u0, u1) = u0 + z +
q exp(u1)

z
.

Consider primitive forms with respect to the choice ΩZ/S :=
dz
z

. Then Theorem 3.7 of [54] (where
Z and S are chosen smaller) can be restated as follows. Here we provide an alternative proof, by
using Theorem 4.15.

Remark 6.5. The pair ((C∗)n, f ) with f (z) := z1 + · · · + zn + q
z1···zn

is a mirror Landau-Ginzburg
model of Pn. In this case, it has been shown in [3] that the identity section 1 is a primitive form with
respect to the relative holomorphic volume form dz1

z1
∧ · · · ∧ dzn

zn
.

Proposition 6.6. The identity section 1 ∈ Γ(S,HF,Ω
(0) ) is a primitive form.

Proof. To prove the statement, we define a subspace L ofH f ,Ω, given by

L := t−1B[t−1] where B := SpanC

{
1,

q
z

}
⊂ H f ,Ω.

We first show that L is an opposite filtration. Note that {1, q
z} represent a basis of Jac( f ). Clearly,

we have t−1L ⊂ L and H f ,Ω = H f ,Ω
(0) ⊕L. Assume the next claim on the higher residue pairings

on B ⊂ H f ,Ω first.

Claim: K f
Ω (1, 1) = 0, K f

Ω

( q
z , q

z

)
= 0, K f

Ω

(
1, q

z

)
= −1.

Then It follows that K f
Ω(B, B) = C, and hence L is an opposite filtration by definition.

Since Q f (z∂z) = z∂z f = z− q
z , we have [z] = [ q

z ] inH f ,Ω
(0) . Hence,

∇Ω
t∂t

1− 0 · 1 = ∇Ω
t∂t

1 = [− f
t
] = −[

z + q
z

t
] = −2[

q
z
]t−1 ∈ L.

Since Q f (∂z) = ∂z f − t
z = 1− q

z2 − t
z , we have [− q

z2 ] = [ t
z − 1] inH f ,Ω

(0) . Hence,

∇Ω
t∂t
[
q
z
] = [−

z + q
z

t
· q

z
] = [−q

t
+

1
t
(

qt
z
− q)] = [−2q

t
+

q
z
] ∈ t−1B + B.

It follows that ∇Ω
t∂t
L ⊂ L. Hence, the opposite filtration L is good and 1 is a primitive element

with respect to L.

Note F−F0
t = t−1(u0 +

q
z (e

u1 − 1)
)
∈ L⊗C R. For k ≥ 2, inH f ,Ω

(0) , we have

q
zk =

1
zk−2 −

1
zk−2 ∂z f =

1
zk−2 + t · z∂z

1
zk−2 · z =

1
zk−2 − (k− 1)t

1
zk−1 .
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It follows that 1− e
F−F0

t ∈ L⊗C R. Hence,

e
F0−F

t = 1 + (e
F0−F

t − 1) ∈ (HF,Ω
(0) ⊗OS R)⊕

(
e

f−F
t L⊗C R

)
.

Therefore, the identity section 1 is a primitive form by Theorem 4.15.

It remains to prove the above claim as follows.

We simply denote f ′ := ∂z f . It is easy to compute that

V f =
1
f ′

∂z∧, and
[
Q, V f

]
g = t

1
f ′

z
∂

∂z
( g

z
)

for any g ∈ Γ(X,OX).

Denote B±ε := {z ∈ X | |z− (±√q)| = ε} and C±ε := ∂B±ε , where 0 < ε << 1. Take a smooth
cut-off function ρ on X with ρ|B±ε ≡ 1 and ρ|X\(B+

2ε∪B−2ε)
≡ 0. Similar to Example 2.15, we have

K f
Ω

( 1
zi ,

1
z j

)
= −∑

r≥0
tr
∮

C+
ε ∪C−ε

1
zi

dz
z2 · f ′

(
−z

∂

∂z
1

z f ′

)r ( 1
z j

)
= ∑

r≥0
tr Resz∈{0,∞} 1

zi
dz

z2 · f ′

(
−z

∂

∂z
1

z f ′

)r ( 1
z j

)
= ∑

r≥0
(−t)r Resz∈{0,∞} dz

z
1
zi

1
z− q/z

(
z

∂

∂z
1

z− q/z

)r 1
z j

where we use the observation that poles of the integrant can only occur at±√q, 0 or ∞. By direct
calculations, the leading term (up to a constant) of the Laurant series expansion of

Ar(z) :=
1
zi

1
z− q/z

(
z

∂

∂z
1

z− q/z

)r 1
z j .

around the origin z = 0 is given by zr+1−i− j. The leading term (up to a constant) of the Laurant
series expansion of Ar(z) around the origin z = ∞ is given by ( 1

z )
k+1+i+ j. It follows easily that

K f
Ω (1, 1) = 0, K f

Ω

(
1,

q
z

)
= q Resz=0

dz
z(z2 − q)

= −1,

and K f
Ω

(1
z

,
1
z
)
= (−t) · Resz=0

dz
z(z2 − q)

z
∂

∂z
(

1
z2 − q

) = 0.

�
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