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Abstract. Let X = G/P be a homogeneous space and εk be the class of a

simple coroot in H2(X). A theorem of Strickland shows that for almost all

X, the variety of pointed lines of degree εk, denoted Zk(X), is again a homo-
geneous space. For these X we show that the 3-point, genus 0, equivariant

K-theoretic Gromov-Witten invariants of lines of degree εk are equal to quan-

tities obtained in the (ordinary) equivariant K-theory of Zk(X). We apply
this to compute the structure constants N

w,εk
u,v for degree εk from the multi-

plication of two Schubert classes in the equivariant quantum K-theory ring of
X. Using geometry of spaces of lines through Schubert or Richardson varieties

we prove vanishing and positivity properties of N
w,εk
u,v . This generalizes many

results about K-theory and quantum cohomology of X, and also gives new
identities among the structure constants in equivariant K-theory of X.

1. Introduction

Let G be a simple, simply connected, complex Lie group, and T ⊂ B ⊂ G be a
maximal torus T included in a Borel subgroup B. Fix P ⊃ B a parabolic subgroup
of G containing the Borel, and let X = G/P be the associated flag manifold. We
also fix a homology class εk ∈ H2(X;Z) corresponding to a simple coroot α∨k in
the dual root system associated to G. Strickland [41] classified the Fano variety
Lk(X) of lines of class εk which are included in X. It turned out that for most
homogeneous spaces X - notably for all simply laced groups G, or when P = B, or
when X is cominuscule - the variety Lk(X) is again homogeneous. Furthermore, in
any of these cases, the variety of pointed lines

Zk(X) = {(x ∈ `) : ` ⊂ X and ` has class εk},
is again homogeneous. For example, Zk(G/B) = G/B; if X = Gr(p,m) is the
Grassmannian of p-dimensional subspaces in Cm, then Zk(Gr(p,m)) = Fl(p −
1, p, p + 1;m) - the three-step flag manifold parametrizing triples of subspaces
(Wp−1 ⊂Wp ⊂Wp+1) in Cm with dimWi = i. See §3 for details.

The first objective of this paper is to compute the 3-point, genus 0, T -equivariant
K-theoretic Gromov-Witten (KGW) invariants 〈[F1], [F2], [F3]〉εk on such X, where
[Fi] ∈ KT (X) is the class determined by the equivariant coherent sheaf Fi on X.
Givental [18] defined these invariants (for more general d ∈ H2(X;Z)) as the sheaf
Euler characteristic

〈[F1], [F2], [F3]〉εk := χ
M0,3(X,εk)

(ev∗1[F1] · ev∗2[F2] · ev∗3[F3])

over the moduli space of stable maps M0,3(X, εk), where evi are the evalua-
tion maps; see §2.4 below. If Fi is the structure sheaf of a variety Ωi ⊂ X and
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codim Ωi = dimM0,3(X, εk) then one recovers the cohomological GW invari-

ants 〈[Ω1], [Ω2], [Ω3]〉εk ; see [16]. The KGW invariants are the building blocks of
QKT (X) - the equivariant quantum K-theory algebra of X. This is a deforma-
tion of KT (X), defined by Givental and Lee [18, 33]. A study of this ring and its
structure constants for cominuscule Grassmanians was started in [9, 7], but very
little is known beyond this situation. Our main objective is to study the structure
constants of QKT (X) for degree εk, where X is in the (large) class of homogeneous
spaces described previously. These structure constants are defined with respect to
the Schubert basis {Ou} where Ou ∈ KT (X) is the class of the structure sheaf of

the Schubert variety Y (u) = B−uP/P , with B− the opposite Borel subgroup; u
is the minimal length representative in its coset in W/WP - the Weyl group of G
modulo that of P (cf. §2.3). There is an identity in QKT (X) (cf. §6 below):

Ou ◦ Ov =
∑
z

czu,vOz +
∑
w,k

Nw,εk
u,v qkOw + terms with higher powers of q.

Here czu,v ∈ Λ := KT (pt) (the representation ring of T ) are the structure constants
of KT (X) (since QKT (X) is a deformation of it), qk are the quantum parameters,
and Nw,εk

u,v ∈ Λ; cf. §6 below. An additional difficulty in computing Nw,εk
u,v is that,

unlike in the ordinary quantum cohomology, they are not single KGW invariants,
but an alternating sum of these.

1.1. Statement of results. We state next a more precise version of our results.
Because the formulas are simpler, in this introduction we restrict to the case when
Zk(X) = X. This holds if the nodes in the Dynkin diagram of G which determine
the parabolic group P are not adjacent to node k. For example, X = G/B satisfies
this condition, but X = Gr(p,m) does not. We call these parabolics k-free - cf. §3
below. Recall that KT (X) is a Λ-module with a Λ-basis consisting of the Schubert
classes Ou. Another basis is given by the opposite Schubert classes Ou = [OX(u)],

associated to Schubert varieties X(u) = BuP/P . Consider the K-theoretic divided
difference operator ∂k : KT (X) → KT (X) associated to the root αk. This is a
Λ-module endomorphism which satisfies:

∂k(Ou) = Ouk ; ∂k(Ou) = Ouk .
See equation (2) below for formulas of uk, u

k and Lemma 5.2 for proofs.

Theorem 1.1. Let P be a k-free parabolic group, u, v, w minimal length represen-
tatives in W/WP and [F ], [G], [H] ∈ KT (G/P ). Then

(a) The equivariant KGW invariant 〈[F ], [G], [H]〉εk equals

〈[F ], [G], [H]〉εk = χ
G/P

(∂k([F ]) · ∂k([G]) · [H]),

where · denotes the multiplication in KT (G/P ). In particular,

〈Ou,Ov, [F ]〉εk = χ
G/P

(Ouk · Ovk · [F ]).

(These are the relevant invariants needed to define the quantum K multiplication.)
(b) The structure constant Nw,εk

u,v in QKT (G/P ) equals the coefficient of Ow in
the expression

∂k(Ou) · ∂k(Ov)− ∂k(Ou · Ov) ∈ KT (G/P ).

Equivalently, if sk is the reflection associated to the root αk and δ is the Kronecker
symbol,

(1) Nw,εk
u,v = cwuk,vk − δwk,wsk(cwu,v + cw

k

u,v).
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(c) Assume that uk = u or vk = v. Then Nw,εk
u,v = 0 in QKT (X).

(d) The non-equivariant structure constant Nw,εk
u,v satisfies the positivity property:

(−1)`(u)+`(v)−`(w)Nw,εk
u,v ≥ 0.

Parts (a)-(c) of the Theorem 1.1 generalize to homogeneous spaces X = G/P ,
where P covers “almost all” parabolic groups - see Defn. 3.1 below. In this case
Zk(X) 6= X and a “quantum” structure constant Nw,εk

u,v equals a combination of
“classical” structure constants in KT (Zk(X)); see Thms. 5.1 and 6.8 below for
details. This “quantum=classical” formula is in the spirit of similar formulas dis-
covered in [8, 9, 12] for the GW invariants on the (cominuscule) Grassmanians, and
by N. C. Leung and the first author [35, 36] for more general homogeneous spaces.
The vanishing property is generalized in Thm. 6.9 below. Combined with formula
(1) this implies some remarkable identities among the ordinary structure constants
in KT (X), which resemble the “dc-triviality” and “descent-cycling” conditions dis-
covered by Knutson [27, 28] in equivariant cohomology of G/B. A further study
of such identities in the context of equivariant K Schubert Calculus should be of
independent interest.

The positivity result in (d) generalizes a positivity result of Brion [3] in the
K-theory of X (discovered by Buch [6] for Grassmannians). We conjecture - and
partially prove - a generalization to the equivariant case in Rmk. 6.7 below. To

prove (d) we show that if uk 6= u and vk 6= v then both cwuk,vk and (cwu,v + cw
k

u,v) have
the expected sign. The reason is that both are coefficients in the expansion of the
classes of projected Gromov-Witten varieties in terms of Schubert classes; since the
former have rational singularities, Brion’s [3, Thm. 1] (cf. Thm. 6.6 below) implies
the result. This leads us to the key technical facts needed in the proof of Thm. 1.1,
which we briefly explain next. Define

D =M0,{1,2,•}(X, 0)×XM0,{•,3}(X, εk) ⊂M0,3(X, εk)

to be the boundary component containing a general map f : C1 ∪ C2 → X, where
Ci ' P1, the first two marked points are on C1 (which is collapsed through f), and
the third point is on C2; the map to X is given by evaluating at the intersection
{•} = C1 ∩ C2. Define the (boundary) Gromov-Witten varieties GWεk(z, v) ⊂
M0,3(X, εk) respectively GW0,εk(z, v) ⊂ D to be

ev−1
1 (X(z)) ∩ ev−1

2 (Y (v)),

where evi : M0,3(X, d) → X is the evaluation map at the i-th marking, or its
restriction to D. The projected GW varieties are subvarieties of X defined by

Γεk(z, v) = ev3(GWεk(z, v)); Γ0,εk(z, v) = ev3(GW0,εk(z, v)).

Our main technical result is the following (cf. Thm. 4.1, Prop. 6.2 and Lemma
6.4 below):

Theorem 1.2. Let P be a k-free parabolic group. Then:
(a) The projected GW variety Γεk(z, v) equals the Richardson variety X(zk) ∩

Y (vk).
(b) The projected (boundary) GW variety Γ0,εk(z, v) has rational singularities,

and there are inclusions

X(z) ∩ Y (v) ⊂ Γ0,εk(z, v) ⊂ X(zk) ∩ Y (vk) = Γεk(z, v).
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If zk = z or vk = v then Γ0,εk(z, v) = Γεk(z, v); the inclusions are strict otherwise.
(c) The evaluation map ev3 : GWεk(z, v) → Γεk(z, v) is cohomologically trivial,

i.e. (ev3)∗OGWεk
(z,v) = OΓεk (z,v) and the higher direct images Ri(ev3)∗OGWεk

(z,v) =

0 for i > 0. The same holds for the restriction ev3 : GW0,εk(z, v)→ Γ0,εk(z, v).

Part (c) of the Theorem 1.2 allows us to transfer a computation in the K-theory
of the moduli spaces M0,3(X, εk) or D to one on X, while parts (a) and (b) help
to compute explicitly the resulting expressions in KT (G/P ). The proof of this
Theorem relies heavily on the geometry of spaces of lines in G/P . We believe that
similar results hold in a much greater generality (for all degrees d, and all projected
GW varieties), and this is a particular instance of that phenomenon.

Acknowledgements. C. L. wishes to thank Naichung Conan Leung and Bumsig
Kim for valuable suggestions and constant encouragement during the preparation of
this project. L. M. wishes to thank his collaborators Anders Buch, Pierre-Emmanuel
Chaput and Nicolas Perrin for inspiring conversations; he is grateful to Allen Knut-
son for an insightful discussion about the geometry of lines on G/B.

2. Preliminaries

The goal of this section is to establish the notation and the basic definitions used
throughout the paper.

2.1. Lie data. Let G be a simple, simply connected, complex Lie group, and fix
T ⊂ B ⊂ G a Borel subgroup of G containing a maximal torus T . Let W = N(T )/T
be the associated Weyl group, where N(T ) denotes the normalizer of the torus.
Each w ∈ W has a length `(w); denote by w0 the longest element in W , and by
id the identity. Associated to this datum one has the set of roots R, positive roots
R+, and simple roots ∆ = {α1, ..., αr}. Recall that W is generated by the simple
reflections si = sαi , for αi ∈ ∆. Let (−,−) denote the W -invariant inner product
on R∆. Each root α ∈ R has a coroot α∨ = 2α

(α,α) . The coroots form the dual root

system R∨ = {α∨ | α ∈ R}, with a basis of simple coroots ∆∨ = {β∨ | β ∈ ∆}.
For β ∈ ∆ we let ωβ ∈ R∆ denote the corresponding fundamental weight, defined
by (ωβ , α

∨) = δα,β for α ∈ ∆.
For the parabolic subgroup P ⊃ B we denote by ∆P ⊂ ∆ the subset of simple

roots in P , and by WP the subgroup of W generated by the reflections of roots in
∆P . Let WP be the set of minimal length representatives for cosets in W/WP . It
can be characterized as

WP = {w ∈W : w(α) > 0,∀α ∈ ∆P };
see e.g. [21, Ch.2,§5.1]. Then for each coset in W/WP define `(wWP ) = `(w) where
w is the minimal length representative in the coset wWP . Recall that there is a
partial order on W called the Bruhat order, which is determined by the covering
relations for u ≤ v if and only if v = usα, for α ∈ R+ and `(v) > `(u). This induces
a partial order on W/WP by projection: uWP ≤ vWP if and only if uw ≤ vw′ for
some w,w′ ∈WP ; we also refer to this as Bruhat order.

Let αk ∈ ∆ \ ∆P and sk the corresponding simple reflection. For w ∈ W we
denote by wk respectively wk the Weyl group elements

(2) wk =

{
wsk if `(wsk) < `(w)
w otherwise

, wk =

{
wsk if `(wsk) > `(w)
w otherwise

.
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Lemma 2.1. Assume that w ∈ WP is a minimal length representative, and that
∆P does not contain any simple root adjacent to αk in the Dynkin diagram of G.
Then both wk and wk are minimal length representatives in WP .

Proof. It suffices to show that wsk ∈ WP . For any α ∈ ∆P , the hypothesis on
P implies that sk(α) = α. Then wsk(α) = w(α) > 0 since w ∈ WP and we are
done. �

A parabolic subgroup P which satisfies the hypotheses of the Lemma will be
called k-free. For example, any Borel subgroup B is k-free for any k. Note that
k-freeness is necessary for the lemma to hold. For example, take G = SL3(C) with
∆ = {α1, α2}, then take P with ∆P = {α2}. If w = s2s1 then w ∈ WP but
w1 = s2 /∈WP . We will see later that for G/P where P is k-free, the moduli space
of pointed lines of degree εk = α∨k on G/P can be identified to G/P itself.

The elements wk, wk can also be defined using the nil-Hecke, respectively the
opposite nil-Hecke products on W . For example, wk = w ·sk where · is the ordinary
(length-increasing) nil-Hecke product on W - see [10]). We also notice that in our
conventions α0 is never a root, so the index k 6= 0 in αk; thus w0 is never obtained
as in equation (2) above.

2.2. Equivariant K-theory. Let T ⊂ B be the maximal torus. For now let X be
a complex, irreducible, projective T -variety. Denote by a : T×X → X the T -action
and by pX : T ×X → X the projection. We recall next the definition of KT (X) -
the equivariant K-theory of X - and its properties, following [13, Ch. 5], [4, §3.3]
and [15, §15.1]. An equivariant sheaf on X is a coherent OX -module F together
with a given isomorphism I : a∗F ∼= p∗XF ; this isomorphism has the property that
(m × idX)∗I = p∗23I ◦ (idT × a)∗I as morphisms of sheaves on T × T × X, where
m is the group operation on T and p23 is the projection to the last two factors of
T × T ×X.

The equivariant K-homology group KT (X) is the Grothendieck group of equi-
variant sheaves on X, i.e. the free abelian group generated by isomorphism classes
[F ] of equivariant sheaves, modulo the relations [F ] = [F ′] + [F ′′] if there exists an
equivariant exact sequence 0 → F ′ → F → F ′′ → 0. This group is a module over
the equivariant K-cohomology ring KT (X), defined as the Grothendieck group of
equivariant vector bundles on X. Both the multiplicative structure of KT (X) and
the module structure of KT (X) are given by tensor products. If F ,G are equivariant
sheaves there is a product in equivariant K-homology

[F ] · [G] =
∑
j

(−1)j [TorXj (F ,G)],

where TorXj is the j-th Tor sheaf. In order for the product to be well-defined
one requires that F ,G have finite resolutions by equivariant vector bundles. This
happens if X is smooth [13, 5.1.28], or if F ,G are pull-backs of equivariant coherent
sheaves via an equivariant, flat morphism g : Z → X. In particular, if X is non-
singular, the map KT (X) → KT (X) which sends a vector bundle to its sheaf of
sections is an isomorphism.

Given an equivariant morphism of T -varieties f : X → Y , there is a ring homo-
morphism f∗ : KT (Y )→ KT (X) defined by pullback of vector bundles. If Y = pt,
this determines a KT (pt)-module structure of KT (X), and therefore also a KT (pt)-
module structure on KT (X), via the module map KT (X) ⊗ KT (X) → KT (X).
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Recall that KT (pt) = R(T ) - the character ring of T ; set Λ := R(T ). If f is
proper, then there is also a pushforward map f∗ : KT (X) → KT (Y ) defined by
f∗[F ] =

∑
i≥0(−1)i[Rif∗F ]. This map is a homomorphism of KT (Y )-modules by

the projection formula [22, Ex. III.8.3]. Both pullback and pushforward are functo-
rial with respect to composition of morphisms. Considering the (proper) morphism
ρ : X → pt and [F ] ∈ KT (X) we denote ρ∗[F ] ∈ Λ by

∫
X

[F ]. Notice that∫
X

[F ] = χ
X

(F) =

dimX∑
i=0

(−1)ichT Hi(X,F)

is the equivariant sheaf Euler characteristic of the sheaf F , where chT M denotes
the character of the T -module M . We will occasionally use χ

X
(F) instead of

∫
X

[F ].
Recall that the variety X has rational singularities if there exists a desingular-

ization π : X̃ → X for which π∗OX̃ = OX and Riπ∗OX̃ = 0 for i > 0. It turns
out that if X has rational singularities then it is normal, and if one desingulariza-
tion satisfies the aforementioned properties then all do - see e.g. [4] and references
therein. In general, we say a morphism f : X → Y is cohomologically trivial if
f∗OX = OY and Rif∗OX = 0 for i > 0. This will be a key property in this paper.
The main tool to prove cohomological triviality is the following result, proved in
[9, Thm. 3.1], and which is based on a Theorem of Kollár [30]:

Theorem 2.2. Let f : X → Y be a surjective equivariant map of projective T -
varieties with rational singularities. Assume that the general fiber of f is rational,
i.e. f−1(y) is an irreducible rational variety for all closed points in a dense open
subset of Y . Then f∗OX = OY and Rif∗OX = 0 for i > 0. In particular, f∗[OX ] =
[OY ] ∈ KT (Y ).

2.3. Schubert classes and KT (G/P ). Consider now the flag variety X = G/P ,
endowed with the T -action obtained by restricting the G-action defined by left
multiplication. For each w ∈ WP there are the Schubert cells X(w)o = BwP/P

and Y (w)o = B−wP/P , and their closures, the Schubert varieties X(w) = BwP/P

and Y (w) = B−wP/P where B− = w0Bw0 is the opposite Borel subgroup. Note
that dimX(w) = codim Y (w) = `(w) and that X(w) ∩ Y (w) consists of a unique,
T -fixed point which we denote by ew. The Schubert varieties have T -equivariant
sheaves of regular functions OX(w),OY (w) which in turn determine Schubert classes

Ow = [OX(w)] and Ow = [OY (w)] in KT (X) = KT (X) - the T -equivariant K-theory
of X. It is well known that the set of Schubert classes {Ow}w∈WP and {Ow}w∈WP

both form a Λ-basis of KT (X). For this and other basic facts about KT (X) which
will be mentioned below see e.g. [20].

The push-forward to a point determines a non-degenerate Λ-pairing

< [E], [E′] >=

∫
X

E ⊗ E′ ∈ Λ; [E], [E′] ∈ KT (X).

The dual (Ow)∨ ofOw with respect to this pairing is the class ξw := [OX(w)(−∂X(w))],
where ∂X(w) = X(w) \X(w)o is the boundary divisor of X(w). Using this pairing
one can define the structure constants cwu,v ∈ Λ of the equivariant K-theory ring by

Ou · Ov =
∑
w

cwu,vOw; cwu,v =< Ou · Ov, ξw >=

∫
X

Ou · Ov · ξw.
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The structure constants cwu,v have been heavily studied, and they will be the building
blocks required to compute the structure constants of (equivariant) quantum K-
theory - see §6 below. Explicit formulas and algorithms to compute these coefficients
can be found e.g. in [31, 34].

If P ⊂ Q are two parabolic subgroups containing T , there is a natural G-
equivariant projection map π : G/P → G/Q. The inclusion of the parabolic sub-
groups determines an inclusion of groups WP ⊂ WQ, and therefore a set inclusion
WQ ⊂ WP . Note also that if Ω ⊂ G/P and Ω′ ⊂ G/Q are Schubert varieties
(either B or B−-stable), then π(Ω) and π−1(Ω′) are also Schubert varieties, and
it is easy to find the associated Weyl group elements. The situations we will en-
counter most often are π−1(Y (w)) = Y (w) and π(X(w)) = X(w) where w ∈ WQ

is the minimal length representative for the coset wWQ. The projection π induces
an injection π∗ : KT (G/Q) → KT (G/P ) and since π is flat π∗[OΩ′ ] = [Oπ−1(Ω′)].
Using e.g. Frobenius splitting arguments one can show that π : Ω→ π(Ω) is coho-
mologically trivial, therefore π∗[OΩ] = [Oπ(Ω)] - cf. [5, Thm. 3.3.4]. We will need
a generalization of this from Schubert to Richardson varieties Rvu := X(u) ∩ Y (v).
This is nonempty exactly when v ≤ u in the Bruhat order. In this case Rvu is an
irreducible T -variety of dimension `(u)− `(v); see [3] for more details.

Lemma 2.3. Let P ⊂ Q be two parabolic subgroups and π : G/P → G/Q the
natural projection. Let R ⊂ G/P be a non-empty Richardson variety. Then both R
and π(R) have rational singularities and the restriction morphism π : R→ π(R) is
cohomologically trivial.

Proof. The fact that R has rational singularities is proved in [3, §1]. The other
assertions are proved in [29] or [2]. �

2.4. K-theoretic Gromov-Witten invariants. We continue to use X for G/P .
The homology group H2(X;Z) is isomorphic to ⊕αi∈∆Zα∨i /⊕βj∈∆P

Zβ∨j . A degree
is an effective element d ∈ H2(X;Z) and it can be written as a non-negative com-
bination of simple coroots d =

∑
αj∈∆\∆P

njα
∨
j . The degree α∨k will be denoted by

εk. For the degree d ∈ H2(X) denote by M0,n(X, d) the moduli space of (genus
0) stable maps to X, which compactifies the space of rational curves of degree d
in X with n marked points. We list below some of the well-known properties of
this moduli space - we refer to [16] for details. We remark that in this paper we
will only consider the case when d = εk, and that in this special case most of these
properties can be easily derived from an alternate description of the moduli space
given in the next section. We leave this derivation to the interested reader and
instead point to the relevant references for the general properties.

The elements ofM0,n(X, d) are equivalence classes of morphisms f : (C; pt1, ..., ptn)→
X where C =

⋃
Ci is a tree of P1’s containing the points ptk ∈ C which are

smooth points of C, f∗[C] = d, and f is stable, i.e. each component Ci of
C such that f(C) = pt contains at least three markings; a marking is either
a marked point ptj or a point of intersection of two components. The equiva-
lence is given by automorphisms of f : (C; pt1, ..., ptn) → X which preserve the
marked points. Corresponding to the marked points there are evaluation maps
EV = (ev1, ..., evn) : M0,n(X, d) → Xn sending f : (C; pt1, ..., ptn) → X to
(f(pt1), ..., f(ptn)). The G-action on X extends to one on the moduli space by
(g · f)(x) = g · f(x). Since the moduli space is irreducible [42] it follows that evi is
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flat. The moduli space is rational [25] and it has finite quotient singularities [16],
therefore rational singularities.

Let Ωi, 1 ≤ i ≤ 3 be three T -stable subvarieties of X. The (3-point, genus
0, equivariant) K-theoretic Gromov-Witten invariant (KGW) is the sheaf Euler
characteristic

〈[OΩ1
], [OΩ2

], [OΩ3
]〉d = χ

M0,3(X,d)
(EV∗([OΩ1

]× [OΩ2
]× [OΩ3

])).

If
∑3
i=1 codimX Ωi = dimM0,3(X, d) this is the ordinary Gromov-Witten invariant;

the K-theoretic version was defined by Givental [18].
Let u, v ∈WP . We will heavily use the (2-point) Gromov-Witten varieties

GWd(u, v) = ev−1
1 X(u) ∩ ev−1

2 Y (v) ⊂M0,3(X, d).

If non-empty, the variety GWd(u, v) irreducible, unirational and it has rational
singularities [7, §3]. Denote also by

Γd(u, v) = ev3(GWd(u, v)) ⊂ X

the projected Gromov-Witten variety. The interest in these varieties comes from
the fact that for any [F ] ∈ KT (X),

〈Ou,Ov, [F ]〉d =

∫
M0,3(X,d)

(ev1× ev2)∗(Ou ×Ov) · ev∗3[F ] =∫
M0,3(X,d)

[OGWd(u,v)] · ev∗3[F ] =

∫
X

(ev3)∗[OGWd(u,v)] · [F ];

(3)

here we used the projection formula and the fact that (ev1× ev2)∗(Ou × Ov) =
[OGWd(u,v)]. The latter follows from Sierra’s K-theoretic version of Kleiman transver-
sality Theorem [40] and it actually holds for n-point GW varieties - the details of
the proof are in [9, §4.1]. This computation shows that one can reduce the compu-
tation of a KGW invariant to a computation in the K-theory of X, provided that
one can compute explicitly the push-forward (ev3)∗[OGWd(u,v)]. This will be done
in Thm. 4.1 below.

3. Lines in G/P

The goal of this section is to introduce the variety of lines Lk(X) of a fixed
degree εk = α∨k ∈ H2(X;Z) in a homogenous space X = G/P . These varieties are
characterized by Strickland in [41] and they can be divided in two categories. In
the first category, which corresponds to most parabolic subgroups P , are included
all homogeneous spaces X so that Zk(X) is an auxiliary homogeneous space G/Q.
But it is not always the case that Zk(X) is homogeneous, and Strickland performs a
case-by-case study to identify explicitly the remaining varieties Zk(X). Our paper
is concerned with the “regular” homogeneous spaces from the first category.

Let L be a very ample line bundle on X. This is determined by a weight λ =∑
i niωi, where ni = (λ, α∨i ) > 0 for all αi ∈ ∆ \∆P . A line is a subvariety ` ⊂ X

such that its image ι(`) under the embedding ι : X ⊂ P(H0(X,L)∗) := P(V ) is
a line in P(V ). Strickland shows that P(V ) contains a line in X if the weight λ
satisfies (λ, α∨k ) = 1 for αk ∈ ∆ \∆P . Moreover, such a line ` has homology class
[`] = α∨k ∈ H2(X;Z). Consider now L(X) - the Fano variety of lines in P(V )
included in X. This is a projective subvariety of X, and there is a locally constant
morphism e : L(X) → H2(X;Z) defined by sending ` to its fundamental class [`].
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Then define Lk(X) := e−1(α∨k ) as a closed subset of X, considered as a scheme with
its reduced structure. The variety Lk(X) is independent of the choice of λ, and its
points are complex curves in X of fixed homology class εk; see loc. cit. for complete
details. Define the incidence variety Zk(X) = {(x, `) ∈ X × Lk(X) : x ∈ `}.

Definition 3.1. Consider the set P of pairs (P, αk) of a parabolic group P and a
root αk ∈ ∆ \∆P such that:

• either αk is a long root, or
• the connected component containing αk in the Dynkin diagram of G con-

sisting of roots in ∆P ∪ {αk} is simply laced.

Obviously, the set P contains all pairs (P, αk) for simply laced groups G, and
also all pairs where P = B is a Borel subgroup (since ∆B = ∅). It also contains
pairs (P, αk) where P is k-free, or when P is a maximal parabolic subgroup, and
αk a cominuscule root (i.e. αk appears with coefficient 1 in the expansion of the
highest root in R+).

Fix (P, αk) ∈ P and define two parabolic subgroups as follows: Pk ⊂ P is the
parabolic subgroup determined by

∆Pk := ∆P \ {αi : (αi, α
∨
k ) 6= 0}.

In other words, to obtain ∆Pk we remove from ∆P the roots in the Dynkin diagram
of G which are adjacent to αk. Clearly Pk is k-free in the sense of §2.1, and if P
is already k-free then Pk = P . The second group, denoted P (k), is defined by
∆P (k) = ∆Pk ∪ {αk}. Recall the main result in [41]:

Theorem 3.2 ([41], Thm. 1). Let (P, αk) ∈ P. Then:

(1) There are natural isomorphisms Lk(G/P ) ' G/P (k) and Zk(G/P ) '
G/Pk.

(2) The previous isomorphisms are compatible with the natural projections, i.e
there is a commutative diagram

Zk(G/P )
' //

pr2

��

G/Pk

π

��
Lk(G/P )

' // G/P (k)

The proof of the Theorem uses the natural G action on Lk(G/P ) and Zk(G/P ).
One first proves that G acts transitively on both varieties, then identifies the stabi-
lizer of a T -fixed point in both. The moduli spacesM0,0(G/P, εk) andM0,1(G/P, εk)
also admit a natural G-action and the moduli points can be identified with lines,
respectively pointed lines in G/P . (For example, if f : C → X is a point in
M0,0(X, εk), the stability condition implies that C ' P1, and the equivalence class
of f corresponds to reparametrizations.) This shows:

Corollary 3.3. There are natural isomorphisms M0,0(G/P, εk) ' G/P (k) and

M0,1(G/P, εk) ' G/Pk, and a commutative diagram as in Thm. 3.2 obtained by
replacing the varieties Lk(G/P ) and Zk(G/P ) by the appropriate moduli spaces;
the evaluation map ev1 corresponds to pr2.
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4. (Projected) Gromov-Witten varieties and cohomological trivial
maps

The goal of this section is to prove the technical results needed to make explicit
calculations of KGW invariants. We first introduce some notations and the general
setup. Let (P, αk) ∈ P and Q a k-free parabolic group satisfying B ⊂ Q ⊂ P .
The natural projection π : G/Q → G/P induces a map Π : M0,3(G/Q, εk) →
M0,3(G/P, εk) by Π(f) = π ◦ f . Fix u, v ∈ WP and let û ∈ WQ be defined by
π−1(X(u)) = X(û). Clearly Π(GWεk(û, v)) ⊂ GWεk(u, v) and abusing notation we
denote the restricted map again with Π. There is a commutative diagram:

(4) GWεk(û, v) ⊂M0,3(G/Q, εk)
Π //

ev3

��

GWεk(u, v) ⊂M0,3(G/P, εk)

ev3

��
Γεk(û, v) ⊂ G/Q π // Γεk(u, v) ⊂ G/P

where the bottom map is the restriction of π. The main theorem of this section is:

Theorem 4.1. Assume that GWεk(u, v) is non-empty.
(a) If P is k-free, the projected Gromov-Witten variety Γεk(u, v) equals the

Richardson variety X(uk) ∩ Y (vk).
(b) For any (P, αk) ∈ P, GWεk(û, v) = Π−1(GWεk(u, v)).
(c) If (P, αk) ∈ P then all varieties in diagram (4) have rational singularities,

and all maps are surjective and cohomologically trivial.

In the situation when Q = B, the claimed properties of Π can also be derived
from more general results of Woodward [43] proving Peterson comparison formula.
The idea is that for homogeneous spaces G/P where (P, αk) ∈ P, the Peterson lift
of the degree εk ∈ H2(G/P ) remains εk ∈ H2(G/B). Our proof is different and
elementary, and it relies on the geometry of spaces of lines in flag manifolds. The
key part for calculations of KGW invariants is the cohomological triviality of ev3.
The proof of the theorem is divided into two main cases, for P being k- free and
(P, αk) ∈ P, but not necessarily k-free.

4.1. The case when P is k-free. The key property satisfied by homogeneous
spaces X = G/P when P is k-free is that M0,1(G/P, εk) ' G/P . Although this
follows from Cor. 3.3, we will reprove it here, in a different way. The ingredients
in our proof will be used repeatedly throughout the paper. The main observation
is that through any point x ∈ G/P , there exists a unique line ` 3 x of degree εk.
We first introduce some necessary definitions.

The curve neighborhood Γd(Ω) of a subvariety Ω ⊂ X is the locus of points x ∈ X
so that there exists a rational curve C of degree d so that x ∈ C and C∩Ω 6= ∅. The
set Γd(Ω) can also be realized as ev2(ev−1

1 Ω), and this gives it a scheme structure.
It follows that if Ω is a B-stable variety then so is its curve neighborhood, so it
must be a union of B-stable Schubert varieties. In fact, if Ω is a B-stable Schubert
variety, then so is Γd(Ω) [7, Prop. 3.2]. The Weyl group element corresponding to
this variety was identified in [10]. For the convenience of the reader, we include this
proof in the case when P is k-free and d = εk, when the arguments are simpler.
From now on in this section P is a k-free parabolic subgroup.

Proposition 4.2. Let P be a k-free parabolic subgroup, and u ∈ WP . Then
Γεk(X(u)) = X(uk) and Γεk(Y (u)) = Y (uk).
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Proof. We will only show the formula for Γεk(X(u)) - the other formula is sim-
ilar. It is clear that X(uk) ⊂ Γεk(X(u)). Consider the Gromov-Witten variety
GWεk(ev) := ev−1

3 (ev) ⊂ M0,3(X, εk) where ev ∈ X(u) is a T -fixed point; this
variety is non-empty because ev3 is surjective. Since T is a connected solvable
algebraic group acting on GWεk(ev), it follows that it contains T -fixed point [23,
§21.2]. This corresponds to a morphism f : (C; pt1, pt2, pt3)→ X and the image of
this morphism is a T -stable line of degree εk, containing ev. We denote this line
with `, and notice that ` ⊂ Γεk(X(v)). Further, because X(v) ⊂ X(u) we have
that Γεk(X(v)) ⊂ Γεk(X(u)) so we can assume that v = u.

It is well-known (cf. e.g. [11, §2] or [17]) that any irreducible T−stable curve
C in X contains exactly two T -fixed points of the form euWP

and eusαWP
, where

α ∈ R+ \R+
P , and that this curve has degree α∨ ∈ H2(X). Therefore ` joins eu to

ew, where wWP = usαWP for a root α ∈ R+ \R+
P with

(5) α∨ − α∨k ∈ ⊕αj∈∆P
Zα∨j .

If α 6= αk then α∨ must contain in its decomposition at least one simple coroot α∨i
so that nodes i and k are adjacent in the Dynkin diagram of G. Since P is k-free,
αi ∈ ∆ \ ∆P , which contradicts equation (5). Then α = αk and w = usk, which
implies that Γεk(X(u)) ⊂ X(uk). This finishes the proof. �

Corollary 4.3. For any x ∈ X, there exists a unique line ` of degree εk which
contains x. In particular, this line is isomorphic to the Schubert variety X(sk).

Proof. Without loss of generality, one can assume that x = eid is the unique B-fixed
point in X. Then apply the previous proposition to X(u) = X(id). �

Corollary 4.4. The evaluation map ev1 :M0,1(X, εk)→ X is an isomorphism.

Proof. Cor. 4.3 shows that the set theoretic fibre over each point in X consists of a
single element. Since both varieties are normal, it follows that ev1 is an isomorphism
[39, p. 209]. �

Remark 4.5. The proof of Cor. 4.4 did not use Strickland’s characterization Thm.
3.2, and it can be used to recover it. The idea is that for any parabolic subgroup
Q so that (Q, k) ∈ P, the group Qk is k-free, therefore M0,1(G/Qk, εk) = G/Qk.
Then one can show that each line ` ⊂ G/Q of degree εk is a fibre of the morphism
G/Qk → G/Q(k). This recovers Cor. 3.3 and ultimately Thm. 3.2.

Corollary 4.6. Let u, v ∈WP for P k-free. Then Γεk(u, v) equals the Richardson
variety X(uk) ∩ Y (vk).

Proof. By definition and using Prop. 4.2

Γεk(u, v) = ev3(GWεk(u, v)) ⊂ ev3(ev−1
1 X(u)) ∩ ev3(ev−1

2 Y (v)) = X(uk) ∩ Y (vk).

We show the reverse inclusion. Let x ∈ X(uk)∩Y (vk). There exist two lines `1 3 x,
`2 3 y of degree εk so that `1 ∩X(u) 6= ∅ and `2 ∩ Y (v) 6= ∅. But Cor. 4.3 implies
that `1 = `2 and we are done. �

To prove that ev3 : GWεk(u, v) → Γεk(u, v) is cohomologically trivial we need
one more lemma:

Lemma 4.7. Let P be k-free and ` a line of degree εk. Let u ∈ WP and assume
that `∩X(u) 6= ∅ and that `∩X(uk)o 6= ∅. Then either ` ⊂ X(u) or the intersection
` ∩X(u) is transversal and it consists of a single point. In the first case uk = u.
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Proof. As before X = G/P . Consider the evaluation map

ev2 : ev−1
1 (X(u)) ⊂M0,2(X, εk)→ ev2(ev−1

1 X(u)) = X(uk).

By [7, Prop. 3.2] and because the moduli space M0,2(X, εk) is irreducible [42],
this is a locally trivial fibration over the open cell X(uk)o and it has irreducible
fibres over this cell. We claim that each of these fibres is isomorphic to ` ∩X(u).
Indeed, by Prop. 4.2 the line ` satisfies that ` ⊂ X(uk), and by hypothesis there
exists x0 ∈ ` ∩X(uk)o. The fibre over x0 consists of all lines `′ of degree εk with
two marked points x0, y ∈ `′ with the additional property that y ∈ `′ ∩ X(u).
(It is possible that x0 = y in which case (x0, y, `

′) corresponds to an element
f : C1 ∪ C2 → X in the boundary of M0,2(X, εk), where f(C1) = x0 = y, and
f(C2) = `′.) Cor. 4.3 implies that there exists a unique line of degree εk through
x0, so `′ = `, and the fibre above is the intersection `∩X(u). Since ev−1

1 (X(u)) has
rational singularities [7, Cor. 3.1], so does a general fibre of ev2 [3, Lemma 3]. Using
that ev2 is B-equivariant this implies that all fibres over X(uk)o are isomorphic.
But these fibres have dimension at most 1, therefore they must be smooth.

Then we have two possibilities: either dim ` ∩X(u) = 1, when ` ⊂ X(u) (and a
fortiori uk = u), or ` ∩X(u) is transversal, and it consists of a single point. �

We can now prove a part of Thm. 4.1:

Theorem 4.8. Let P be a k-free parabolic subgroup and u, v ∈WP . Then Γεk(u, v) =
X(uk)∩Y (vk) and the map ev3 : GWεk(u, v)→ Γεk(u, v) is cohomologically trivial.

Proof. By Cor. 4.6 we only need to show the cohomological triviality. The idea
is to use Thm. 2.2, so we need to check that all hypotheses are satisfied. First,
the Gromov-Witten variety GWεk(u, v) and the Richardson variety Γεk(u, v) have
rational singularities, by [7, Cor. 3.1] respectively [3, §1]. Take x ∈ X(uk)o∩Y (vk)o

and let ` 3 x be the corresponding line of degree εk given by Cor. 4.3. Note that
X(uk)o ∩ Y (vk)o is open and dense in Γεk(u, v), therefore the fibre Fx over x is
general. We now identify this fibre, using the definition of stable maps. According
to Lemma 4.7, we have three situations: ` ∩ X(u) = pt or ` ∩ Y (v) = pt or
` ⊂ X(u)∩Y (v). In the first two situations Fx is isomorphic to (`∩X(u))×(`∩Y (v)),
which is a rational variety. Let now ` ⊂ X(u) ∩ Y (v). Then uk = u and vk = v.
Consider the moduli space M0,3(`, 1) ' M0,3(P1, 1), where 1 ∈ H2(P1) is the

fundamental class of P1. Then Fx is isomorphic to ev−1
3 (x) ⊂ M0,3(`, 1). On one

side ev−1
3 (x) contains an open dense set birational to ` × `. On the other side

ev−1
3 (x) is irreducible [7, Prop. 3.2], therefore Fx is rational. �

4.2. The case when (P, αk) ∈ P. In this section we will prove the remaining
parts of Thm. 4.1. Note that if (P, αk) ∈ P, u ∈ WP and Q ⊂ P then clearly
(Q,αk) ∈ P and u ∈WQ. The key result in this section is the following:

Theorem 4.9. Let (P, αk) ∈ P and Q ⊂ P a k-free parabolic subgroup. Then the
map Π :M0,3(G/Q, εk)→M0,3(G/P, εk) is surjective and cohomologically trivial.

Proof. We use again Thm. 2.2, so we need to check that all hypotheses hold. Since
the moduli spaces have rational singularities, it suffices to prove that Π is surjective
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and a general fibre is irreducible and rational. We have a commutative diagram

M0,3(G/Q, εk)
Π //

for

��

M0,3(G/P, εk)

for

��
M0,1(G/Q, εk) ' G/Q Π′ //M0,1(G/P, εk) ' G/Pk

where the horizontal maps are induced by the projection π, and the vertical maps
are the forgetful maps, forgetting points pt1, pt2 (see [16] for details). By Cor. 4.4
and Cor. 3.3, there are isomorphisms of the bottom moduli spaces to the listed
homogeneous spaces. In particular, the bottom map is surjective and all its fibers
are isomorphic to Pk/Q, a rational variety. Let f : (P1; 0, 1,∞)→ G/P be a general
element inM0,3(G/P, εk), and F = Π−1(f). The forgetful map induces a morphism

forF : F = Π−1(f) → Π′−1(f ′) ' Pk/Q where f ′ = for(f) ∈ M0,1(G/P, εk). We
claim that forF is an isomorphism, and this will finish the proof of part (a).

By Zariski’s Main Theorem [39, p. 209] it suffices to show that forF is bijective.

Let f̃ ′ ∈ Π′−1(f ′) and f̃ ∈ for−1
F (f̃ ′) ⊂ F . Since f is general we can assume that the

points f(pti) ∈ G/P are all distinct. By definition of stability of maps, this implies

that f̃ is defined on P1 (rather than a tree of P1’s). Degree reasons imply that both

maps f̃ : P1 → Image(f̃) = f̃ ′(P1) and π : Image(f̃) ⊂ G/Q → Image(f) ⊂ G/P

are isomorphisms. By definition we must have that π(f̃(pti)) = f(pti), and this

determines f̃ uniquely and proves our claim. �

Remark 4.10. The previous theorem is no longer true if (P, αk) /∈ P. For example,
take G to be of type B2 and ∆ = {α1, α2} so that α1 is long. Consider the
parabolic group P given by ∆P = {α1}. Notice that G/P is the variety OG(2, 5)
of dimension 2 isotropic planes in C5 (i.e. lines on a smooth quadric in P4); in
fact G/P ' P3 using Dynkin symmetry between types B2 and C2. One calculates
that dimM0,3(OG(2, 5), α∨2 ) = 7. Denoting by OF(1, 2; 5) = G/B the full flag

manifold of type B2, we have that dimM0,3(OF(1, 2; 5), α∨2 ) = 6. This shows that

the map Π : M0,3(OF(1, 2; 5), α∨2 ) →M0,3(OG(2, 5), α∨2 ) is not surjective. If the
degree α∨2 ∈ H2(G/B) is replaced by α∨ = α∨1 + α∨2 (for α = α1 + 2α2) then
Π :M0,3(OF(1, 2; 5), α∨)→M0,3(OG(2, 5), α∨2 ) becomes surjective.

We are now ready to prove the remaining parts of Thm. 4.1:

Proof of Thm. 4.1. Part (a) was proved in Cor. 4.6 and cohomological triviality in
k-free case in Thm. 4.8. The equality Π−1(GWεk(u, v)) = GWεk(û, v) follows from
the fact that π−1X(u) = X(û) and π−1Y (v) = Y (v). Because X(u) and Y (v) are
opposite Schubert varieties, Kleiman transversality theorem [26] (see e.g. [3, §1])
implies that GWεk(u, v) intersects the open dense set of points f ∈M0,3(G/P, εk)
which satisfy the generality conditions from the proof of Thm. 4.9. Then the
fibre over such a general point in GWεk(u, v) is isomorphic to Pk/Q, hence it is
rational. Finally, we know that 2-point Gromov-Witten varieties are irreducible [7,
Cor. 3.3] and have rational singularities [7, Cor. 3.1], and invoking again Thm.
2.2 yields the cohomological triviality of the top map. In particular, all maps are
now surjective. By Cor. 4.6, Γεk(û, v) is a Richardson variety, therefore Γεk(u, v)
has rational singularities and the bottom map is cohomologically trivial by Lemma
2.3. Since the left vertical map is also cohomologically trivial (cf. Thm. 4.8), and
since all varieties in the diagram are normal, a standard argument based on the



14 CHANGZHENG LI AND LEONARDO C. MIHALCEA

Grothendieck spectral sequence [24, p. 74] shows that the right vertical map is
cohomologically trivial as well. �

5. K-theoretic Gromov-Witten invariants

The goal of this section is to give formulas for KGW invariants 〈Ou,Ov,Ow〉εk
for X = G/P , provided that (P, αk) ∈ P. The main result is:

Theorem 5.1. (a) Assume that P is k-free and [F ] ∈ KT (X). Then

〈Ou,Ov, [F ]〉εk =

∫
G/P

Ouk · Ovk · [F ].

In particular, 〈Ou,Ov, (Ow)∨〉εk = cwuk,vk is the structure constant in KT (G/P ).
(b) Let (P, αk) ∈ P, Q ⊂ P two parabolic groups containing the Borel group B,

and [F ], [G], [H] ∈ KT (G/P ). Then

〈[F ], [G], [H]〉εk,G/P = 〈π∗[F ], π∗[G], π∗[H]〉εk,G/Q
where the KGW invariants are on G/P and G/Q respectively and π : G/Q→ G/P
is the projection.

(c) (K-theoretic Peterson comparison formula) Let (P, k) ∈ P such that B ⊂ P .
Then we have an equality

〈Ou,Ov,Ow〉εk,G/P = 〈Ou,Ov,OwwPk 〉εk,G/B
where the KGW invariants are on G/P and G/B respectively. Here wPk is the
longest element in the Weyl group WPk .

Note that if (P, αk) ∈ P then Pk is k-free, so the Theorem gives an explicit
“quantum=classical” formula for all the KGW invariants on G/P . The proof of (a)
and (b) will repeatedly use Thm. 4.1 above; part (c) follows from these two.

We recall next the definition and relevant properties of the divided difference
operator in K-theory. This will be crucially used to obtain formulas for KGW
invariants 〈Ou,Ov, [F ]〉εk , knowing similar formulas for 〈Ou,Ov, [F ]〉εk , where the
Schubert varieties are opposite to each other. Note that Ou = Ow0uWP

as classes
in non-equivariant K-theory, but this is no longer true equivariantly. In fact, the
first type of KGW invariants appear in the definition of structure constants in the
equivariant quantum K-theory.

Let αk ∈ ∆\∆P be a simple root and P a k-free parabolic subgroup. Define the
parabolic group P (k) as in §3. Let πk : G/P → G/P (k) be the natural projection.
Its fibre is P (k)/P ' P1. Form the fibre diagram

Z ' G/P ×G/P (k) G/P
pr1 //

pr2

��

G/P

πk

��
G/P

πk // G/P (k)

where pri are the natural projections. The divided difference operator ∂k : KT (G/P )→
KT (G/P ) is defined by

∂k = (pr2)∗pr
∗
1 = π∗k(πk)∗ .

In the case when P = B is the Borel subgroup, this is a famous endomorphism of
Λ-algebras KT (X) satisfying ∂2

k = ∂k and the “braid relations” - see e.g. [31, Prop.
2.4]. Abusing notation we also denote by the same symbol ∂k the map sending a
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variety V ⊂ G/P to ∂k(V ) = π−1
k (πk(V )) ⊂ G/P ; it will be clear from the context

which object is referred to.

Lemma 5.2. Let P be a k-free parabolic subgroup. Then

∂k(Ow) = Owk ; ∂k(Ow) = Owk .

Moreover, if R ⊂ G/P is a Richardson variety then ∂k(R) is irreducible and it has
rational singularities, and furthermore ∂k[OR] = [O∂k(R)] ∈ KT (G/P ).

Proof. The first two formulas follow from the push-forward and pull-back formulas
stated in §2.3. Further, πk(R) has rational singularities by Lemma 2.3. Since πk is
a smooth morphism, it follows that π−1

k (πk(R)) has rational singularities as well.
The formula for ∂k[OR] follows again from Lemma 2.3. �

We are now ready to prove the first two parts of Thm. 5.1:

Proof of Thm. 5.1 parts (a) and (b). The proof of part (a) is divided into two parts.
We first prove that

(6) 〈Ou,Ov, [F ]〉εk =

∫
X

Ouk · Ovk · [F ].

Using projection formula, the calculation in (3) above, and that ev3 : GWεk(u, v)→
Γεk(u, v) is cohomologically trivial (Thm. 4.8) we get:

〈Ou,Ov, [F ]〉εk =

∫
M0,3(X,εk)

[OGWεk
(u,v)] · ev∗3[F ] =

∫
X

(ev3)∗[OGWd(u,v)] · [F ]

=

∫
X

Ouk · Ovk · [F ];

the last equality follows because [OX(uk)∩Y (vk)] = [Ouk ] · [Ovk ] ∈ KT (X). In
the non-equivariant K-theory this implies the formula in the Theorem, because
Ou = Ow0uWP . We now prove the equivariant version. Since {Ou} and {Ou} are
both bases for KT (X), there is an expansion Ou =

∑
z∈WP fu,zOz, with fu,z ∈ Λ.

Applying the divided difference operator ∂k , which is a Λ-module endomorphism,
and Lemma 5.2 we obtain

Ouk = ∂k(Ou) =
∑
z∈WP

fu,zOzk .

We now use the previous identity, the fact that KGW invariant is linear in each
argument and equation (6) to obtain

〈Ou,Ov, [F ]〉εk =
∑
z

fu,z〈Oz,Ov, [F ]〉εk =
∑
z

fu,z

∫
X

Ozk · Ovk · [F ]

=

∫
X

(
∑
z

fu,zOzk) · Ovk · [F ] =

∫
X

Ouk · Ovk · [F ].
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We turn to the proof of part (b). Note first that if (P, αk) ∈ P, u ∈ WP and
Q ⊂ P then clearly (Q,αk) ∈ P and u ∈WQ. We have a commutative diagram

M0,3(G/Q, εk)
Π //

EV

��

M0,3(G/P, εk)

EV

��
(G/Q)3 π×π×π // (G/P )3

where the top map is surjective and cohomologically trivial (cf. Thm. 4.1) and
EV = ev1× ev2× ev3. Using projection formula we get

〈[F ], [G], [H]〉εk,G/P =

∫
M0,3(G/P,εk)

EV∗([F ]× [G]× [H])

=

∫
M0,3(G/Q,εk)

Π∗EV∗([F ]× [G]× [H]) =

∫
M0,3(G/Q,εk)

EV∗(π∗[F ]× π∗[G]× π∗[H])

= 〈π∗[F ], π∗[G], π∗[H]〉εk,G/Q .

�

If `(u) + `(v) ≥ `(w) + 2, the KGW invariant 〈Ou,Ov,Ow〉εk equals the (coho-
mological) equivariant GW invariant 〈[Y (u)], [Y (v)], [X(w)]〉εk . In turn, this equals
the structure constant cw,εku,v for the equivariant quantum cohomology of G/P - see
[38] for details. The next Corollary gives a formula for these invariants:

Corollary 5.3. Let P be k-free. Then the equivariant GW invariants satisfy:

〈[Y (u)], [Y (v)], [X(w)]〉εk =

{ ∫
G/P

[Y (uk)] · [Y (vk)] · [X(w)] if uk 6= u and vk 6= v

0 otherwise

Proof. The equivariant GW invariant on the left exists only when `(u) + `(v) ≥
`(w)+2. If uk 6= u, vk 6= v then `(uk)+`(vk) ≥ `(w), so the invariant on the right is
the structure constant cwuk,vk in the equivariant (non-quantum) cohomology of G/P .
The claimed equality follows from Thm. 5.1 (a). Consider the other situation; we
can assume that vk = v. As in the proof of Thm. 5.1(a) we obtain that

〈[Y (u)], [Y (v)], [X(w)]〉εk =

∫
G/P

[Y (u)] · (ev1)∗[GWεk(w, v)].

But ev1(GWεk(w, v)) = X(wk) ∩ Y (vk), and a dimension computation shows that
dimGWεk(w, v) > dim ev1(GWεk(w, v)); thus the integral on the right is 0. �

The next formula relates those KGW invariants on G/P needed to calculate
structure constants in quantum K-theory of G/P (see §6 below), to structure con-
stants in KT (G/Q), where Q is k-free.

Corollary 5.4. Let (P, αk) ∈ P, and Q a k-free parabolic with Q ⊂ P . Then for
any u, v, w ∈WP :

〈Ou,Ov, ξw〉εk,G/P =
∑
z

〈Ou,Ov, ξz〉εk,G/Q =
∑
z

czuk,vk .

where the last two sums are over minimal length representatives z ∈ WQ so that
zWP = wWP , and czuk,vk are structure constants in KT (G/Q) - cf. §2.3 above.
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Proof. By Thm. 5.1 it follows that

〈Ou,Ov, ξw〉εk,G/P = 〈Ou,Ov, π∗(ξw)〉εk,G/Q.

To finish the proof it suffices to compute π∗(ξw) =
∑
z∈WQ gw,zξz. Then

gw,z =

∫
G/Q

π∗(ξw) · Oz =

∫
G/P

ξw · π∗(Oz) = δw,zWP
,

where δ is the Kronecker delta symbol. This shows that

(7) π∗(ξw) =
∑

z∈WQ;zWP=wWP

ξz.

and finishes the proof. �

5.1. Peterson comparison formula. We prove next part (c) of Thm. 5.1. For
cohomological Gromov-Witten invariants this was conjectured by Peterson, and
proved by Woodward [43] in the non-equivariant case, and by Lam and Shimozono
[32] equivariantly.

Theorem 5.5. Let (P, αk) ∈ P and u, v, w ∈WP . Then the following K-theoretic
analogue of Peterson comparison formula holds:

〈Ou,Ov,Ow〉εk,G/P = 〈Ou,Ov,OwwPk 〉εk,G/B .

Proof. Denote by πP : G/B → G/P and πPk : G/B → G/Pk the natural projec-
tions. Using that π∗POu = Ou and Thm. 5.1 parts (a) and (b) we obtain

〈Ou,Ov,Ow〉εk,G/P =

∫
G/B

Ouk · Ovk · Ow .

By projection formula and because uk, vk ∈WPk (by Lemma 2.1, since Pk is k-free)
we have that∫
G/B

Ouk · Ovk · Ow =

∫
G/B

(πPk)∗(Ouk · Ovk) · Ow =

∫
G/Pk

Ouk · Ovk · (πPk)∗Ow

=

∫
G/Pk

Ouk · Ovk · (πPk)∗OwwPk ,

where the last equality follows from (πPk)∗Ow = OwWPk . Reversing the reasoning
yields ∫

G/Pk

Ouk · Ovk · (πPk)∗OwwPk =

∫
G/B

Ouk · Ovk · OwwPk

and the last integer equals 〈Ou,Ov,OwwPk 〉εk,G/B again by Thm. 5.1 (a). �

Remark 5.6. Same line of proof can be used to show the following identity: if
u, v, w ∈WP then

〈Ou,Ov,Ow〉εk,G/P =

∫
G/B

Ouk · Ovk · OwwPwPk = 〈Ou,Ov,OwwPwPk 〉εk,G/B ,

where wP is the longest element in WP . In this identity and the one from Thm. 5.5
one can replace the KGW invariants with the cohomological ones and obtain iden-
tities for the (equivariant) Gromov-Witten invariants. This is because the required
(in)equalities on codimensions of Schubert classes are satisfied for both invariants
- see [43] for details.
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6. Applications to quantum K-theory

Let X = G/P with (P, αk) ∈ P. The formulas for the KGW invariants from
Thm. 5.1 allow us to compute the structure constants for the equivariant quantum
K-theory of X as combinations of structure constants of KT (G/Pk). In the case
when P is k-free, the projected (boundary) Gromov-Witten varieties have rational
singularities. We exploit this and certain equalities among them to prove that the
structure constants of quantum K-theory either vanish or are alternating. To state
precisely these results, we first recall the basic definitions of equivariant quantum
K-theory, following [9] (see also [7, 33]).

Equivariant quantum K-theory of X, denoted by QKT (X), is a Λ[[qi]]-algebra,
with a Λ[[qi]]-basis Ou where u varies in WP and the parameters qi are indexed
by the simple roots in ∆ \∆P . If P is k-free then deg qk = 2; for general degrees
we refer to [17]. The multiplication in QKT (X) is determined by the structure
constants Nw,d

u,v ∈ Λ in the identity

Ou ◦ Ov =
∑
w,d

Nw,d
u,v q

dOw;

here d =
∑
αi∈∆\∆P

diα
∨
i is a degree in H2(X) and qd =

∏
qdii . We are interested

in the case when d = εk. Then by definition

(8) Nw,εk
u,v = 〈Ou,Ov, (Ow)∨〉εk −

∑
z

〈Ou,Ov, (Oz)∨〉0 · 〈Oz, (Ow)∨〉εk .

Here 〈[F ], [G]〉εk denotes the 2-point KGW invariant defined by

〈[F ], [G]〉εk =

∫
M0,2(X,εk)

ev∗1[F ] · ev∗2[G].

This is in fact equal to 〈[F ], [G],Oid〉εk , because the mapM0,3(X, εk)→M0,2(X, εk)
has rational fibres [18]. The structure constants for the non-equivariant quantum
K-theory ring QK(X) are obtained by specializing eλ → 1 in the equivariant coef-
ficient ring Λ; thus in this case Nw,εk

u,v ∈ Z. The main result of this section is the
following:

Theorem 6.1. Let X = G/P for P a k-free parabolic group and u, v, w ∈WP .
(a) The structure constant Nw,εk

u,v in QKT (X) equals:

(9) Nw,εk
u,v = cwuk,vk − δwk,wsk(cwsku,v + cwu,v),

where on the right hand side are structure constants in KT (X) and δ is the Kro-
necker delta symbol. Equivalently, Nw,εk

u,v is the coefficient of Ow in the expansion

(10) ∂k(Ou) · ∂k(Ov)− ∂k(Ou · Ov).

(b) If uk = u or vk = v, the equivariant structure constant Nw,εk
u,v = 0 for all

w ∈WP .
(c) The non-equivariant structure constants Nw,εk

u,v are alternating, i.e.

(11) (−1)`(u)+`(v)−`(w)−deg qkNw,εk
u,v ≥ 0.

The statements (a) and (b) will be generalized to parabolic groups P such that
(P, αk) ∈ P; see §6.3 below. We prove next the part (a) of the Theorem, and
dedicate two sections to parts (b) and (c), which have more involved proofs.
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Proof of Thm. 6.1 (a). We note first that

〈Oz, (Ow)∨〉εk = 〈Oid,Oz, (Ow)∨〉εk =

∫
G/P

O · Ozk · (Ow)∨ = δzk,w,

where the second equality follows from Thm. 5.1. Applying the same theorem again
to the remaining KGW invariants from equation (8) yields formula (9). The second
part of (a) is an easy calculation, obtained by identifying the coefficient of Ow in
the expansion (10) with the right hand side of (9), using that Ou · Ov =

∑
cwu,vOw

in KT (X) and the formulas from Lemma 5.2. �

6.1. Boundary Gromov-Witten varieties and their projections. In order to
prove parts (b) and (c) of Thm. 6.1, we need to study more geometric properties
of the varieties involved in the definition of the structure constants in QKT (X).
Recall from [9, Rmk. 5.3] that an alternate way to compute Nw,εk

u,v is:

(12)
Nw,εk
u,v = χ

M0,3(X,εk)
(ev∗1Ou · ev∗2Ov · ev∗3(Ow)∨)− χD (ev∗1Ou · ev∗2Ov · ev∗3(Ow)∨),

where D is the fibre product

(13) D =M0,{1,2,•}(X, 0)×XM0,{•,3}(X, εk) 'M0,{•,3}(X, εk),

and the map to X is given by evaluating at the marking •. (The last isomorphism
holds because M0,3(X, 0) ' X.) Set

GW0,εk(z, v) := GWεk(z, v)|D; Γ0,εk(z, v) := ev3(GW0,εk(z, v)).

The first variety is the restriction to D of GWεk(z, v). We refer to these as the
boundary GW variety respectively projected boundary GW variety. Recall the no-
tation Rvz := X(z) ∩ Y (v). From the identification D ' M0,{•,3}(G/B, εk) we
obtain

GW0,εk(z, v) = ev−1
• (Rvz); Γ0,εk(z, v) = ev3(ev−1

• (Rvz)).

Geometrically, Γ0,εk(z, v) is the locus of points x ∈ X so that there exists a line
` 3 x of degree εk which intersects Rvz . Recall that if P is k-free then P (k) denotes
the parabolic group satisfying ∆P (k) = ∆P ∪ {αk}; denote by πk : G/P → G/P (k)
the natural projection. There is a remarkable coincidence between the divided
difference operator ∂k = π∗k(πk)∗ and the operator (ev3)∗ ev∗• in the equivariant
K-theory of G/P , which we explain next.

Proposition 6.2. Let P be a k-free parabolic group and v, z ∈WP .
(a) There is a natural isomorphism D ' G/P ×G/P (k)G/P . Under this isomor-

phism, the evaluation maps ev• and ev3 correspond to projections pr1, pr2 in the
fibre diagram

D ' G/P ×G/P (k) G/P
ev•=pr1 //

ev3=pr2

��

G/P

πk

��
G/P

πk // G/P (k)

.

(b) Assume that Rvz is non-empty. Then the Gromov-Witten subvariety GW0,εk(z, v)

is isomorphic to pr−1
1 Rvz and the diagram in (a) determines another fibre diagram
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GW0,εk(z, v) ' pr−1
1 Rvz

ev•=pr1 //

ev3=pr2

��

Rvz

πk

��
Γ0,εk(z, v) ' π−1

k (πkR
v
z)

πk // πk(Rvz)

Furthermore, Γ0,εk(z, v) has rational singularities and the map ev3 : GW0,εk(z, v)→
Γ0,εk(z, v) is cohomologically trivial.

(c) Under the identifications in (a), the divided difference operator ∂k = π∗k(πk)∗
equals (ev3)∗ ev∗• and it satisfies

∂k[ORvz ] = [O∂k(Rvz)] = [OΓ0,εk
(z,v)].

Proof. We first prove (a). Let x ∈ G/P . We will use repeatedly the observation that
the unique line `x 3 x of degree εk specified by Cor. 4.3 is given by `x = π−1

k (πk(x)).
This follows from Cor. 3.3. Then the evaluation maps ev•, ev3 : D → G/P have
the property that πk ev• = πk ev3. This determines a morphism

Ψ : D → G/P ×G/P (k) G/P

sending a line ` with two markings (x•, x3), to (x•, x3). A line is uniquely deter-
mined by any of the two points it contains, thus this morphism is injective. Ψ is
also surjective, because dimD = dimG/P ×G/P (k) G/P , and the latter variety is
irreducible. Since both varieties are normal, Zariski’s Main Theorem [39, p. 209]
implies that Ψ is an isomorphism. The identification of the evaluation maps with
projections pr1, pr2 is immediate from the definition of Ψ.

We now prove part (b). The restriction Ψ′ of Ψ to GW0,εk(z, v) determines maps

to Rvz and Γ0,εk(z, v) ⊂ π−1
k (πkR

v
z)(= ∂k(Rvz)), and therefore a map

Ψ′ : GW0,εk(z, v)→ Rvz ×πk(Rvz) π
−1
k (πk(Rvz)) ' pr−1

1 (Rvz).

The morphism Ψ′ is again injective. Since Rvz is normal, irreducible and pr1 is a
P1-bundle projection it follows that pr−1

1 (Rvz) is normal and irreducible as well. We
know that GW0,εk(z, v) has rational singularities [7, Cor. 3.1] hence it is normal.
To prove that Ψ′ is an isomorphism it suffices to show that dimGW0,εk(z, v) =

dim pr−1
1 (Rvz). But a standard application of Kleiman’s transversality theorem [26]

shows that

dimGW0,εk(z, v) = dimM0,{•,3}(G/P, εk)− codimRvz =

dimG/P + 1− (dimG/P − dimRvz) = dimRvz + 1 = dim pr−1
1 (Rvz).

Since the projection map pr2 is now identified with the restriction of the evaluation
map ev3 to GW0,εk(z, v) it follows that π−1

k (πk(Rvz)) is isomorphic to the image of
ev3, which is Γ0,εk(z, v). Lemma 2.3 gives that ∂k(Rvz) has rational singularities.
We employ Thm. 2.2 to prove that ev3 is cohomologically trivial. Because we
work in a fibre square diagram, a general fibre of ev3 coincides with a general fibre
F of πk : Rvz → πk(Rvz). This morphism is cohomologically trivial (Lemma 2.3),
in particular it has connected fibres. But the fibre of the unrestricted morphism
πk : G/P → G/P (k) is P1, and this implies that F is either isomorphic to P1 or to
a reduced point. The hypotheses of Thm. 2.2 are then satisfied and ev3 must be
also cohomologically trivial.
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We now prove part (c). By [22, III.9.3] or [13, 5.3.15] it follows that in the given
fibre diagram ∂k = π∗k(πk)∗ = (ev3)∗ ev∗• as operators in the equivariant K-theory.
Then ∂k([ORvz ]) = O∂k(Rvz) from Lemma 2.3. �

We prove in the next three lemmas the key facts needed in the proof of positivity
and vanishing of the structure constants Nw,εk

u,v . In what follows we will repeatedly
use the description of Γ0,εk(z, v) as the locus of points x ∈ G/P contained in a
line ` of degree εk such that ` ∩ Rvz 6= ∅. In all the lemmas we use the common
hypothesis that P is a k-free parabolic subgroup and z, v ∈WP .

Lemma 6.3. If either zk = z or vk = v then Γ0,εk(z, v) = Γεk(z, v).

Proof. One inclusion is clear. Take x ∈ Γεk(z, v) and `x 3 x the unique line from
Cor. 4.3. By definition of Γεk(z, v), the line `x intersects both X(z) and Y (v).
Assume now that zk = z. Then by Prop. 4.2 this line is entirely included in X(z),
therefore it must intersect X(z) ∩ Y (v). The case when vk = v is similar. �

Lemma 6.4. Assume that both zk 6= z and vk 6= v. Then both evaluation maps
ev3 : GWεk(z, v) → Γεk(z, v) and ev3 : GW0,εk(z, v) → Γ0,εk(z, v) are birational
and Γ0,εk(z, v) is a divisor in Γεk(z, v). In particular, we have strict inclusions

Rvz = X(z) ∩ Y (v) ⊂ Γ0,εk(z, v) ⊂ X(zsk) ∩ Y (vsk) = Rvskzsk
.

Proof. Thm. 4.8 shows that Γεk(z, v) = X(zk) ∩ Y (vk). The hypothesis on z, v
implies that

dim Γεk(z, v) = dimX(zk) ∩ Y (vk) = `(z)− `(v) + 2 = dimGWεk(z, v);

the last equality follows from a standard calculation based on Kleiman Transver-
sality Theorem [26]. Since ev3 : GWεk(z, v) → Γεk(z, v) is cohomologically trivial
by Thm. 4.8, Stein factorization [22, III.11.5] shows that it must be birational.

We now turn to Γ0,εk(z, v). The fibre square in the part (b) of Prop. 6.2
implies that a general fibre of ev3 : GW0,εk(z, v) → Γ0,εk(z, v) is isomorphic to
a general fibre of πk : Rvz → πk(Rvz). It suffices to show that the latter map
is birational. Indeed, the hypothesis on z means that z ∈ WP (k), therefore πk :
X(z)→ πk(X(z)) = X(z) is birational; let U ⊂ X(z) ⊂ G/P be the open set where
this map is an isomorphism. Because X(z) ∩ Y (v) 6= ∅, Kleiman Transversality
Theorem implies that Y (v) ∩ U 6= ∅; the claimed birationality follows.

Finally, the definition of Γ0,εk(z, v) implies that we always have inclusions (not
necessarily strict)

Rvz = X(z) ∩ Y (v) ⊂ Γ0,εk(z, v) ⊂ Γεk(z, v) = Rvskzsk
.

Counting dimensions again we obtain that dimRvskzsk
−dimRvz = 2 and dim Γεk(z, v)−

dim Γ0,εk(z, v) = 1, therefore the inclusions must be strict. �

Remark 6.5. The proof of the previous lemma shows more: ev3 : GW0,εk(z, v)→
Γ0,εk(z, v) is birational whenever zk 6= z or vk 6= v.

6.2. Vanishing and positivity of Nw,εk
u,v . To prove the vanishing and positivity

parts from Thm. 6.1 we need to further rewrite the definition of the structure
constants from equation (12), using the additional information from the previous
section. Note that a theorem of Brion [3] gives the signs of the structure constants
in equation (9); but these do not determine that of Nw,εk

u,v . Our proof uses the
geometric results from the previous section, and it shows why the terms of the
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wrong sign get canceled when we consider the full coefficient Nw,εk
u,v . In this section

X = G/P where P is a k-free parabolic subgroup. Expand:

Ou =
∑
z

Pu,zOz; Pu,z ∈ Λ.

We replace Ou by
∑
z Pu,zOz in (12) to obtain

Nw,εk
u,v =

∑
z

Pu,z
(
χ
M0,3(X,εk)

(ev∗1Oz · ev∗2Ov · ev∗3(Ow)∨)−

χD (ev∗1Oz · ev∗2Ov · ev∗3(Ow)∨)
)
.

(14)

We noticed in §2.4 that ev∗1Oz · ev∗2Ov = [OGWεk
(z,v)] in KT (M0,3(X, εk)). Same

proof shows that in KT (D) we have ev∗1Oz · ev∗2Ov = [OGW0,εk
(z,v)]. Recall that

both morphisms ev3 : GWεk(z, v)→ Γεk(z, v) and ev3 : GW0,εk(z, v)→ Γ0,εk(z, v)
are cohomologically trivial (Thm. 4.8 respectively Prop. 6.2). Then by projection
formula we have

χ
M0,3(X,εk)

(ev∗1Oz · ev∗2Ov · ev∗3(Ow)∨)− χD (ev∗1Oz · ev∗2Ov · ev∗3(Ow)∨)

=

∫
X

([OΓεk (z,v)]− [OΓ0,εk
(z,v)]) · (Ow)∨

therefore

(15) Nw,εk
u,v =

∑
z

Pu,z

∫
X

([OΓεk (z,v)]− [OΓ0,εk
(z,v)]) · (Ow)∨.

This immediately implies the claimed vanishing:

Proof of Thm. 6.1 part (b). Because QKT (X) is a commutative ring, we can as-
sume that vk = v. The parabolic subgroup P is k-free, thus Γεk(z, v) = Γ0,εk(z, v)
by Lemma 6.3. Then the vanishing follows from the identity (15). �

For the proof of Thm. 6.1(c) we will use the following positivity theorem of
Brion ([3, Thm.1]).

Theorem 6.6. (Brion) Let Y be an irreducible closed subvariety of X = G/P
which has rational singularities. Consider the expansion

[OY ] =
∑

awOw.

Then (−1)dimY−`(w)aw ≥ 0.

Proof of Thm. 6.1 part (c). Given the vanishing in Thm. 6.1(b), we can assume
that uk 6= u and vk 6= v; equivalently, `(usk) = `(u)−1 and `(vsk) = `(v)−1. There
are two cases. The first is when wk = w. From Thm. 6.1 part (a) Nw,εk

u,v = cwusk,vsk ,
and this coefficient satisfies the required positivity by Thm. 6.6.

We turn to the second case when wk 6= w. In the non-equivariant case Ou = Oũ,
where ũ ∈WP is the minimal length representative in the coset w0uWP ∈W/WP .
Then equation (15) becomes:

Nw,εk
u,v =

∫
X

[OΓεk (ũ,v)] · (Ow)∨ −
∫
X

[OΓ0,εk
(ũ,v)] · (Ow)∨.
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Then the required positivity follows again from Brion’s Theorem. To see that,
consider the expansions

[OΓεk (ũ,v)] =
∑
z

dzũ,vOz; [OΓ0,εk
(ũ,v)] =

∑
z

fzũ,vOz.

Then

(16) Nw,εk
u,v = dwũ,v − fwũ,v,

and by Brion’s Theorem

(−1)dim Γεk (ũ,v)−dimY (w)dwũ,v ≥ 0 and (−1)dim Γ0,εk
(ũ,v)−dimY (w)fwũ,v ≥ 0.

But the hypothesis on u implies that ũk 6= ũ, therefore by Lemma 6.4

dim Γ0,εk(ũ, v) = dimGW0,εk(ũ, v) = dimRvũ + 1 = `(ũ)− `(v) + 1;

(the second equality follows from the fibre square in Prop. 6.2). Same Lemma
implies that dim Γεk(ũ, v) = dim Γ0,εk(ũ, v) + 1. Finally,

dim Γεk(ũ, v)− dimY (w) = `(ũ)− `(v) + 2− dimY (w) =

(dimX − `(u))− `(v) + 2− (dimX − `(w)) = `(w) + 2− (`(u) + `(v)).

This shows that both terms dwũ,v and fwũ,v in (16) have the correct sign, and finishes
the proof. �

Remark 6.7. We conjecture that the equivariant coefficients Nw,εk
u,v satisfy the

positivity property:

(−1)`(u)+`(v)−`(w)−deg qkNw,εk
u,v ∈ Z≥0[e−αi − 1]αi∈∆\∆P

.

This holds if P is k-free and wk 6= wsk, because then Nw,εk
u,v = cwuk,vk as equi-

variant structure constants. The latter satisfies the claimed positivity thanks to a
conjecture of Graham-Kumar [20] proved by Anderson-Griffeth-Miller [1]. It gener-
alizes the Peterson-Graham positivity [19] in equivariant cohomology, and the one
in equivariant quantum cohomology proved by the second author in [37].

If P is k-free, this conjecture follows if the positivity theorem [1, Thm. 4.1]
would generalize from ∂ an ample divisor to a big and nef divisor. We will consider
this generalization and its relation to the QK structure constants elsewhere.

6.3. Structure constants in QKT (G/P ) for more general parabolic groups.
Let X = G/P . In this section we state statements analogous to (a) and (b) from
Thm. 6.1 in the case when P is not k-free, but (P, αk) ∈ P. The proofs will be
similar to those before, therefore we only sketch them and point out the differences.
The main tools we used in the case when P is k-free - Prop. 6.2 and lemmas after
that - are no longer available. Instead, we will rely on a weaker version of Thm.
4.1 to transfer the computations from G/P to G/Pk. Since Pk is k-free, most - but
not all - calculations from previous section will extend.

To fix notation denote by π : G/Pk → G/P the projection and by Π :M0,3(G/Pk, εk)→
M0,3(G/P, εk) the map induced by π. If u ∈ WP , recall that û ∈ WPk is defined
by π−1X(u) = X(û) and that (Ou)∨ is denoted by ξu. We keep the notation from
§6.1, but we distinguish by DP respectively DPk the boundary loci defined in (13)
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for maps to G/P and G/Pk. We have a commutative diagram

(17) DPk ⊂M0,3(G/Pk, εk)
Π //

EV

��

DP ⊂M0,3(G/P, εk)

EV

��
(G/Pk)3 π×π×π // (G/P )3

where as usual EV = ev1× ev2× ev3. The top arrow means that Π induces a re-
striction map Π : DPk → DP . We know from Thm. 4.9 that Π :M0,3(G/Pk, εk)→
M0,3(G/P, εk) is surjective and cohomologically trivial, and minor modifications in
that proof show that its restriction Π : DPk → DP has the same properties. Using
this, projection formula, and equation (12) we obtain (for u, v, w ∈WP ):

Nw,εk
u,v = χ

M0,3(G/P,εk)
(EV∗(Ou ×Ov × ξw))− χDP (EV∗(Ou ×Ov × ξw)) =

χ
M0,3(G/Pk,εk)

(EV∗(Ou ×Ov × π∗(ξw)))− χDPk (EV∗(Ou ×Ov × π∗(ξw))).
(18)

A standard computation based on the class of the diagonal ∆ ⊂ G/Pk×G/Pk (see
e.g. [7, Lemma. 5.1]) shows that

χDPk
(EV∗(Ou ×Ov × π∗(ξw))) =

∑
z∈WPk

〈Ou,Ov, ξz〉0,G/Pk〈O
z, π∗(ξw)〉εk,G/Pk

=
∑
z

czuk,vk ,

where the last sum is over z ∈ WPk such that zkWP = wWP as cosets in W/WP .
This follows because 〈Ou,Ov, ξz〉0,G/Pk = czuk,vk and

〈Oz, π∗(ξw)〉εk,G/Pk =

∫
G/Pk

Ozk · π∗(ξw);

then we use formula (7) for π∗(ξw) in Cor. 5.4 above. Together with formula (18)
this implies:

Theorem 6.8. Let (P, αk) ∈ P, and u, v, w ∈WP . The structure constants Nw,εk
u,v

in QKT (G/P ) are given by the following formula:

Nw,εk
u,v =

∑
a

cauk,vk −
∑
b

cbu,v

where the first sum is over a ∈ WPk such that aWP = wWP , the second over
those b ∈ WPk such that bkWP = wWP , and cauk,vk , c

b
u,v are structure constants in

KT (G/Pk).

We now turn to the analogue of vanishing result from (b), Thm. 6.1.

Theorem 6.9. Let (P, αk) ∈ P and u, v ∈ WP . Assume that either uk = u or
vk = v as minimal length representatives in WPk . Then Nw,εk

u,v = 0 in QKT (G/P ).

Proof. By commutativity of QKT (X) we can assume that vk = v. Starting from
identity (18), the same reasoning used to obtain formula (15) shows that

(19) Nw,εk
u,v =

∑
z∈WPk

Pu,z

∫
G/Pk

([OΓεk (z,v)]− [OΓ0,εk
(z,v)]) · π∗(ξw),

where Ou =
∑
z∈WPk Pu,zOz ∈ KT (G/Pk). But then Γεk(z, v) = Γ0,εk(z, v) by

Lemma 6.3 and we are done. �



KGW INVARIANTS OF LINES ON G/P 25

7. Appendix

In this appendix we present multiplication tables for QKT (G/B) up to degrees
εk, in the case when G = SL3(C) and G = Sp4(C). In type A, the multiplications
are up to the symmetry s1 ←→ s2 of the Weyl group; in type C, α1 denotes the
short root.

Table of QKT (SL3(C)/B) up to degrees εk

Os1 ◦ Os1 ≡ (1− e−α1)Os1 + e−α1Os2s1 + e−α1q1 − e−α1q1Os2

Os1 ◦ Os2 ≡ Os1s2 +Os2s1 −Os1s2s1

Os1 ◦ Os1s2 ≡ (1− e−α1)Os1s2 + e−α1Os1s2s1

Os1 ◦ Os2s1 ≡ (1− e−α1−α2)Os2s1 + e−α1−α2q1Os2

Os1 ◦ Os1s2s1 ≡ (1− e−α1−α2)Os1s2s1 + e−α1−α2q1Os1s2

Os1s2 ◦ Os1s2 ≡ (1− e−α1)(1− e−α1−α2)Os1s2 + e−α1q2Os2s1

+ (1− e−α1)e−α1−α2q2Os1

Os1s2 ◦ Os2s1 ≡ (1− e−α1−α2)Os1s2s1

Os1s2 ◦ Os1s2s1 ≡ (1− e−α1)(1− e−α1−α2)Os1s2s1 + (1− e−α1−α2)e−α1q2Os2s1

Os1s2s1 ◦ Os1s2s1 ≡ (1− e−α1)(1− e−α2)(1− e−α1−α2)Os1s2s1

+ (1− e−α1)(1− e−α1−α2)e−α2q1Os1s2

+ (1− e−α2)(1− e−α1−α2)q2Os2s1

Table of QKT (Sp4(C)/B) up to degrees εk

Os1 ◦ Os1 ≡ (1− e−α1)Os1 + e−α1Os2s1 + e−α1q1 − e−α1q1Os2

Os1 ◦ Os2 ≡ Os1s2 +Os2s1 −Os1s2s1 −Os2s1s2 +Os1s2s1s2

Os1 ◦ Os1s2 ≡ (1− e−α1)Os1s2 + e−α1Os1s2s1 + e−α1Os2s1s2 − e−α1Os1s2s1s2

Os1 ◦ Os2s1 ≡ (1− e−α1−α2)Os2s1 + e−α1−α2Os1s2s1

+ e−α1−α2q1Os2 − e−α1−α2q1Os1s2

Os1 ◦ Os1s2s1 ≡ (1− e−2α1−α2)Os1s2s1 + e−2α1−α2q1Os1s2

Os1 ◦ Os2s1s2 ≡ (1− e−α1−α2)Os2s1s2 + e−α1−α2Os1s2s1s2

Os1 ◦ Os1s2s1s2 ≡ (1− e−2α1−α2)Os1s2s1s2 + e−2α1−α2q1Os2s1s2

Os2 ◦ Os2 ≡ (1− e−α2)Os2 + (1 + e−α1)e−α2Os2s1 − e−α1−α2Os2s1s2

+ e−α2q2 − (1 + e−α1)e−α2q2Os1 + e−α1−α2q2Os2s1

Os2 ◦ Os1s2 ≡ (1− e−2α1−α2)Os1s2 + e−2α1−α2Os2s1s2

+ e−2α1−α2q2Os1 − e−2α1−α2q2Os2s1
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Os2 ◦ Os2s1 ≡ (1− e−α2)Os2s1 + (1 + e−α1)e−α2Os1s2s1

+ e−α2Os2s1s2 − (1 + e−α1)e−α2Os1s2s1s2

Os2 ◦ Os1s2s1 ≡ (1− e−2α1−α2)Os1s2s1 + e−2α1−α2Os1s2s1s2

Os2 ◦ Os2s1s2 ≡ (1− e−2α1−2α2)Os2s1s2 + e−2α1−2α2q2Os2s1

Os2 ◦ Os1s2s1s2 ≡ (1− e−2α1−2α2)Os1s2s1s2 + e−2α1−2α2q2Os1s2s1

Os1s2 ◦ Os1s2 ≡ (1− e−α1)(1− e−2α1−α2)Os1s2 + (1− e−2α1−α2)e−α1Os2s1s2

+ e−3α1−α2q2Os2s1 + (1− e−α1)e−2α1−α2q2Os1

Os1s2 ◦ Os2s1 ≡ (1− e−2α1−α2)Os1s2s1 + (1− e−α1−α2)Os2s1s2

− (1− e−α1−α2 − e−2α1−α2)Os1s2s1s2

Os1s2 ◦ Os1s2s1 ≡ (1− e−α1)(1− e−2α1−α2)Os1s2s1 + (1− e−2α1−α2)e−α1Os1s2s1s2

Os1s2 ◦ Os2s1s2 ≡ (1− e−α1−α2)(1− e−2α1−α2)Os2s1s2

+ e−α1−α2q2Os1s2s1 + (1− e−α1−α2)e−2α1−α2q2Os2s1

Os1s2 ◦ Os1s2s1s2 ≡ (1− e−α1−α2)(1− e−2α1−α2)Os1s2s1s2

+ (1− e−2α1−α2)e−α1−α2q2Os1s2s1

Os2s1 ◦ Os2s1 ≡ (1− e−α2)(1− e−α1−α2)Os2s1 + (1− e−α1−α2)(1 + e−α1)e−α2Os1s2s1

+ (1 + e−α1)e−α1+−2α2q1Os1s2 + (1− e−α2)e−α1−α2q1Os2

Os2s1 ◦ Os1s2s1 ≡ (1− e−α1−α2)(1− e−2α1−α2)Os1s2s1

+ e−2α1−α2q1Os2s1s2 + (1− e−2α1−α2)e−α1−α2q1Os1s2

Os2s1 ◦ Os2s1s2 ≡ (1− e−α2)(1− e−α1−α2)Os2s1s2

+ (1− e−α1−α2)(1 + e−α1)e−α2Os1s2s1s2

Os2s1 ◦ Os1s2s1s2 ≡ (1− e−α1−α2)(1− e−2α1−α2)Os1s2s1s2

+ (1− e−α1−α2)(1 + e−α1)e−α1−α2q1Os2s1s2

Os1s2s1 ◦ Os1s2s1 ≡ (1− e−α1)(1− e−α1−α2)(1− e−2α1−α2)Os1s2s1

+ (1− e−2α1−α2)e−α1q1Os2s1s2

+ (1− e−α1)(1− e−2α1−α2)e−α1−α2q1Os1s2

Os1s2s1 ◦ Os2s1s2 ≡ (1− e−α1−α2)(1− e−2α1−α2)Os1s2s1s2

Os1s2s1 ◦ Os1s2s1s2 ≡ (1− e−α1)(1− e−α1−α2)(1− e−2α1−α2)Os1s2s1s2

+ (1− e−α1−α2)(1− e−2α1−α2)e−α1q1Os2s1s2

Os2s1s2 ◦ Os2s1s2 ≡ (1− e−α2)(1− e−α1−α2)(1− e−2α1−α2)Os2s1s2

+ (1− e−α1−α2)(1 + e−α1)e−α2q2Os1s2s1

+ (1− e−α2)(1− e−α1−α2)e−2α1−α2q2Os2s1

Os2s1s2 ◦ Os1s2s1s2 ≡ (1− e−α2)(1− e−α1−α2)(1− e−2α1−α2)Os1s2s1s2

+ (1− e−α1−α2)(1− e−2α1−α2)e−α2q2Os1s2s1

Os1s2s1s2 ◦ Os1s2s1s2 ≡ (1− e−α1)(1− e−α2)(1− e−α1−α2)(1− e−2α1−α2)Os1s2s1s2

+ (1− e−α2)(1− e−α1−α2)(1− e−2α1−α2)e−α1q1Os2s1s2

+ (1− e−α1)(1− e−α1−α2)(1− e−2α1−α2)e−α2q2Os1s2s1
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