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ABSTRACT. We give an explicit formula for (T-equivariant) 3-pointed genus
zero Gromov-Witten invariants for G/B. We derive it by finding an explicit
formula for the Pontryagin product on the equivariant homology of the based
loop group QK.

1. INTRODUCTION

A flag variety G/B is the quotient of a simply-connected simple complex Lie
group by its Borel subgroup and it plays very important roles in many different
branches of mathematics. There are natural Schubert cycles inside G/B. The
corresponding Schubert cocycles o*’s form a basis of the cohomology ring H*(G/B).
In terms of this basis, the structure coefficients N/, of the intersection product,

U v o__ w w
o"-0" = E Ny o,
w

are called Schubert structure constants, which is a direct generalization of the
Littlewood-Richardson coefficients for complex Grassmannians. When G = SL(n-+
1,C), the coefficients N, count suitable Young tableaus (see e.g. [10]) or honey-
combs [19], [20]. An explicit formula for N}, in all cases are given by Kostant
and Kumar [21] by considering Kac-Moody groups and an effective algorithm is
obtained by Duan [6] via topological methods. Note that a ring presentation of
H*(G/B,C) is given much earlier by Borel [2] in terms of Chern classes of univer-
sal bundles over G/B = K/T, where K is a maximal compact Lie subgroup of G
and T'= K N B is a maximal torus of K.

The (small) quantum cohomology ring of G/B, or more generally of any sym-
plectic manifold, is introduced by the physicist Vafa [38] and it is a deformation of
the ring structure on H*(G/B) by incorporating genus zero Gromov-Witten invari-
ants of G/B into the intersection product. As complex vector spaces, the quantum
cohomology ring QH*(G/B) is isomorphic to H*(G/B)®C|q] with q) = ¢{* - - - ¢~
for A = (ay,--- ,an) € Ho(G/B,Z). The structure coefficients N} of the quantum
product,

o' *o¥ = Z N;’f;f‘q,\aw,
w,A
are called quantum Schubert structure constants. As we will see in section 6.3,
N}ﬁ;f‘ = Ios (o™, o, 0“°") is the 3-pointed genus zero Gromov-Witten invariant
for ", 0", 0% € H*(G/B), by the definition of the quantum product o % .
We will use the terminology “quantum Schubert structure constants” instead of
“Gromov-Witten invariants” for G/B throughout this paper, in analog with the
classical Schubert structure constants.
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Because of the lack of functoriality, the study of the quantum cohomology ring
of G/B, or more generally partial flag varieties G/P, is a challenging problem. A
presentation of the ring structure on QH*(G/B) is given by Kim [18] in terms of
Toda lattice for the Langlands dual Lie group. There have been a lot of studies of
QH*(G/P) in special cases including complex Grassmannians, partial flag varieties
of type A, isotropic Grassmannians and two exceptional minuscule homogeneous
varieties (see e.g. [3], [4], [22], [23] and [5] respectively and the excellent survey [9]).
Nevertheless, the quantum Schubert structure constants had only been computed
explicitly for very few cases, such as complex Grassmannians and complete flag
varieties of type A.

In this article, we give an explicit formula for the (equivariant) quantum Schu-
bert structure constants of the quantum cohomology ring QH*(G/B) (for partial
flag varieties G/ P, see [29]). We should note that an algorithm to determine the
equivariant quantum Schubert structure constants! was obtained earlier by Mihal-
cea [33] and he used it to find a characterization of the torus-equivariant quantum
cohomology QH}.(G/P). To describe the formula, we consider the affine Weyl
group Wy = W x QV, which is the semidirect product of the Weyl group W and
the coroot lattice QV. For any x,y € W, we define Ce,ly) @nd d ] combinatorially,
which are rational functions in simple roots «;. In particular for x = uta,y = vt 4
and z = wtaaqy with A = —12n(n+1) Y"1, wy a sum of fundamental coweights
wy’s, the rational function Z/\W\zer Cw,[txl]Cy,[th]dz,[txﬁxgl will be shown to be a
constant, provided that (X, 2p) = ¢(u) + ¢(v) — £(w) where p is the summation of
fundamental weights w;’s. Furthermore, this number coincides with N’ ;j\ as stated
in our main theorem.

Main Theorem Let u,v,w € W, A€ QV, A= 0. Let A= —12n(n+1)Y " | w;.
The quantum Schubert structure constant N;“y;f‘ for G/B is given by

woA
Nu,;J = E : CutA,[tAI]CUtA,[t>\2]dw?52A+>\7[tx1+x2]’
A1, 2€QVY

provided that (A, 2p) = £(u) + £(v) — L(w) and zero otherwise.

The above summation does make sense, since there are in fact only finitely many
nonzero terms involved. Indeed, the summation over the infinite set QV can be
simplified to the finite set T' x W with T' = {(A1,A2) | A1, A2 = A, A + A2 <
2A 4+ X\, A1 and Ay are anti-dominant elements in @V} and we obtain

N:jj;}/\: Z cutA,[mtxl]cvtA,[U1t>\2]dwa+>\7[U1t)\1+x2]'
(A1, h2,01)ETXW

Quantum Schubert structure constants for G/P can be identified with certain
quantum Schubert structure constants for G/ B via Peterson-Woodward comparison
formula [39], the corresponding formula and its applications are discussed in [29].

When v is a simple reflection, the equivariant quantum product ¢“ * ¥ can
be given explicitly by the equivariant quantum Chevalley formula. This formula
was originally stated by Peterson in his unpublished lecture notes [35] and has
been proved recently by Mihalcea [33]. In [33], Mihalcea also showed that the
multiplication in QH}(G/B) is determined by the equivariant quantum Chevalley

1Explicitly, the equivariant (quantum) Schubert structure constants are homogeneous
polynomials.
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formula together with a few other natural properties (see e.g. Proposition 4.18). As
a consequence, a recursive algorithm to determine N/’ N was given in [33]. However,
an explicit formula is still lacking.

In [35] Peterson already stated that QH2(G/B) is ring isomorphic to HI (QK)
after localization, which is called Peterson’s Theorem. Here QK is the based loop
group of the maximal compact subgroup K of G and the Pontryagin product defines
aring structure on its (Borel-Moore) homology group H! (Q2K). In Peterson’s notes
[35], the powerful tool of nil-Hecke ring of Kostant-Kumar [21] was used heavily.
Lam and his co-authors had done many important works along this direction, such
as [25], [28], [26] and [27]. The proofs of Peterson’s Theorem in [35] are incomplete,
and in [26], Lam and Shimozono proved this result, with the help of Peterson’s
j-isomorphism.

The homology HI (QK) is an associative algebra over S = H7 (pt) and it has
an additive S-basis given by Schubert homology classes {&, | x € W}, where
W; is the set of minimal length representatives of cosets in Wye/TW. We obtain
the following explicit formula for the Pontryagin product of Schubert classes in
HT(QK), based on well-known localization formulas due to Arabia [1] for affine
flag manifolds.

Theorem 3.3 For any Schubert classes &, and &, in HI (QK), the structure
coefficients for their Pontryagin product

Gxey: Z b;yyez
zEW;f

are given by

by = D CoftaCyltnldeftr ]
\peQY

In the present paper, we give an alternative proof of Peterson’s Theorem, in the
sense that we find elementary proofs of the following two formulas of Peterson-Lam-
Shimozono [26] on the Pontryagin product of certain Schubert classes, by analyzing
the combinatorial nature of the summation in the formula of b7 .

(i) For any wtx,t, € W, one has Gui, &1, = Guty, s

(ii) For any o;tx,ut, € Wi with 0; = 04,, i € I, one has

Gaitxeut” = (u(wi)_wi)gut)\Jr“ + Z <7Va wi>6u07t;+u + Z <’7V7wi>6ua—yt)\+“+,yv
vel RIS

where Ty = {y € R" | l(uoy) = l(u) + 1} and Ty = {y € R" | l(uo,) =

l(u) +1—(v",2p)}.

Indeed, Lam and Shimozono noticed that combining the above formulas with the
criterion of Mihalcea gives a proof of Peterson’s theorem. This in turn shows that
any structure constant of QH7(G/B) coincides with certain structure constants
of HI(K), which yields our Main Theorem. In particular, there is a choice of
certain by ,’s which coincide with the same ijj;ﬁ. For instance, we can choose one
such A as in Main theorem to make a certain choice (z,y, z) = (uta, vta, wtoaty).
In many cases, we can replace it by a smaller one (see section 4.3 for more details
on the choices). As a consequence, there are only a few nonzero terms in the
summation for NY;} in many cases. For instance for G = SL(3,C) with u =
v = 815251, w = 8152 and A = 0¥, where 0 is the highest root (see section 5.1 for
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more details on the notations), it suffices to take A = —6V and the summation
for ijf;j\ in fact contains one term only, namely N;“y;f‘ = 030’[50]ds280,[sls2slt729v],

where ¢, [5,] = (*1)150(1%) o=—0 *% and dg, s, [sysos1t_gpv] = Dsaso,[s051525150] =
sosl(ag)soslsgsl(ao)|a0=_9 = 62 by definition. Hence, N*;} = (—#)%-6% = 1. This
coefficient can also be determined by Mihalcea’s algorithm but our formula is more
effective. To show the computational power of our formula, we will compute some
nontrivial coefficients for the higher rank group Spin(7,C).

There could be an alternative way to determine our structure coefficients by
finding polynomial representatives for Schubert classes. For instance, this approach
has been used by Fomin, Gelfand and Postnikov for complete flag varieties of type
A [8]. The work of Magyar [31] could be relevant for general cases. See also [7].

This paper is organized as follows. In section 2, we set up the notations that will
be used throughout this article and review some well-known facts on the theory of
Kac-Moody algebras and groups. In section 3, we define the important quantities
Ce,ly]s Ae,[y) and derive an explicit formula for the Pontryagin product on H T(QK).
In section 4, we analyze our formula and prove our main theorem. In section 5, we
give examples to demonstrate the effectiveness of our formula. The proofs of some
propositions stated in section 4 are given in the the appendix.

2. NOTATIONS

2.1. Notations. We introduce the notations that are used throughout the paper.

G: a simply-connected simple complex Lie group of rank n.
B, H: B is a Borel subgroup of G; H is a maximal torus of G contained in B.
K: a maximal compact subgroup of G.
T: T =KnN H is a maximal torus in K.
g,h: g =Lie(G); h = Lie(H).
I Lg I={1,---,n}; Ly ={0,1,--- ,n}.
R,A: R is the root system of (g,h); A ={a; | i € I} is a basis of simple roots.
Rt: R™ = RN@,c; Z>o0; is the set of the positive roots; R = (— RT) || R*.
o/,QV: {a | i € I'} are the simple coroots; Q¥ = ), Za;’ is the coroot lattice.
QV: Q¥ ={peqQV| (ua;) <0, icI}is the set of anti-dominant elements.
wg, p: {w; | @ € I} are the fundamental weights; p = %Z,@e}% B (= wi)
: {w) | i € I'} are the fundamental coweights.
W: W = (04, : i€ l)isthe Weyl group of (g, b).
0, wo: 0 is the highest (long) root of R; wp is the longest element in W.
gar: the (untwisted) affine Kac-Moody algebra associated to g.
har: Cartan subalgebra of ga¢.
g, 0: g is the affine simple root; § = ag + @ is the null root.
: RE ={a+md|ae R meZ "} URT is the set of positive real roots.
S, Y: S={o04, | i € I4}; Y C Ais a subset.
Wat: the Weyl group of gag; War = (04, : @ € Li).
Wt y: the subgroup of Wy generated by {0, | « € Y}.
WX: the subset {z € Wa | £(z) < £(y),Vy € xWaty } of Wt
G: the Kac-Moody group associated to the Kac-Moody algebra gas.
B: the standard Borel subgroup of G.
Py: the standard parabolic subgroup of G associated to Y; Py D B.
Wa},Poi W;f = WAf; Po = Pa.

a
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LK,QK: LK ={f:S' = K | fissmooth }; QK = {f € LK | f(1s1) = 1x}.
Sa*§: S:Q[ala"'aan]; gz@[a07a1a"'aan]~
D po=qpt gl for A=Y  ae € QY.
0i,08: 0; = 0q, is a simple reflection. o4 is a reflection for 8 € R || ( — RL).
oy,0": Schubert classes for G/B, where u € W. o, € Hyy,)(G/B,Z) and ¢* €
H?*()(G/B,Z) are defined in section 6.3.
S, 6% Schubert classes for G/Py. &, € Hoy(1)(G/Py,Z) and & € H**)(G /Py, Z)
are defined in section 6.4.
Ce,ly): defined in section 3.1 for any z,y € W;.
dg [y: defined in section 3.1 for any x,y € W .

e o = C“’vy}om:—e with ¢, defined in section 3.1.

Ii: Ti(u) ={y € R" | l(uo,) = £(u) + 1}, or simply I’y = 'y (u).
To: To(u) ={y € R" | l(uo,) =L(u) + 1 — (vV,2p)}, or simply 'y = T'a(u).

2.2. Some more explanations. See [17] and [24] for the meaning of the notations
as in section 2.1 as well as the theory of Kac-Moody algebras and groups.

The fundamental weights {w; | ¢ € I'} are the dual basis to the simple coroots
{a) | i € I} with respect to the natural pairing (-,-) : h x h* — C. The simple
reflections {o; = 04, | i € I} act on h by 0;(A\) = A— (A, ;) for A € . Therefore
the Weyl group W, which is generated by the simple reflections, acts on h and bh*
naturally. Note that R = W - A. For any v € R, v = w(q;) for some w € W and
i € I. We can well define v = w(e;"), which is independent of the expressions of

gl

The Weyl group W of g.r is in fact an affine group, Wur = W x QV, where we
denote £5? the image of A € QY in Wy (by abusing notations). To be more precise,
one has 03 = 0atmav for B =a+md € Rye = (f R;g) || RE. In particular, o4, =
opt_gv. Given w € W, A € QV,v € @iel Za; and m € Z, we have ty,., = wtyw ™!
and the following action

wty - (y+md) =w -y + (m— (X 7))d.

Since (Waf, S) is a Coxeter system, we can define the length function £ : Wy — Z>¢
and the Bruhat order (Wat, <) (see e.g. [16]). We use the following notation

T = [0p, - 08, ]red,

whenever (og,,---,0p,) is a reduced decomposition of z € Wyy; that is, r = £(z),
x = op, ---0g, and f;’s are simple roots. (It is possible that 5, = 3; for i # j.)
This notation will also be used throughout this article.

Explicitly, the affine Kac-Moody group G is realized as a central extension by C*
of the loop group consisting of the C((t))-rational points G(C((t))) of G extended
by one dimensional complex torus. For each subset Y C A, there is a standard par-
abolic subgroup Py C G corresponding to Y. In particular, B = Py and we denote
Po = Pa. For our purpose of studying the generalized flag varieties G/B and G /Py,
the group G can be taken simply to be G = G(C((t))). That is, G = Mor(C*, G).
As a consequence, Py = G(C[[t]]) = Mor(C,G) and B={f € Py | f(0) € B}.

In the present paper, we only consider the following two cases: Y = and Y = A.
Note that Wyt g = {1}, WY = W and Waga = W. We denote W, = W4,

2The notation ty is used instead of t,(n) as in chapter 6 of [17].
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3. PONTRYAGIN PRODUCT ON EQUIVARIANT HOMOLOGY OF QK

The T-equivariant (Borel-Moore) homology HI (QK) of based loop group QK
is a module over S = H}(pt) = Q[a, - - -, avy] with an S-basis of Schubert classes
{6, | © € W}, where W, is the set of minimal length representatives of cosets
in Wae/W. T acts on QK by pointwise conjugation. The Pontryagin product
OK x QK — QK, given by (f - g)(t) = f(¢) - g(t), is associative and T-equivariant.
Therefore, it induces a product map HI' (QK) @ HI (QK) — HI(QK), making
HT(QK) an associative S-algebra. The structure constants b;, € S are defined by

6.6, = ZzeW’f blz',yGZ

for z,y € W,;. The main result of this section is Theorem 3.3, giving an explicit
formula for the Pontryagin product as b; , = Zz\,uer Ca[tx]Cy, [t Dz, [tr 4] 1 Which
the summation is in fact only over finitely many non-zero terms and ¢, [}, d, [, are
defined combinatorially as below. Due to Peterson’s Theorem which was proved
by Lam and Shimozono, these structure coefficients b7, correspond to quantum
Schubert structure constants for the equivariant quantum cohomology QH;.(G/B).

3.1. Definitions and properties of c, ,; and d, |-

Definition 3.1. For any x,y € Wy, we define the homogeneous rational function
Coy = CaylQ0, - ) € Qlagt, af! - aiFl] as follows. Letx = [og, -~ 05, ]red-
Ify A x, then cpy = 0; if y < x, then

—1
Coy = (=)™ Y (05, (B3 05 (B2) - oy -+ 05 (Bm)
where the summation runs over all (€1, -+ ,em) €{0, 1} satisfying o) - - 05" = y.
We define c, ) € @[alﬂ, o ait1] as follows.

n

Cy ::E c :E Co(—0, 01, ,0n).
x,[y] ZeyW z,z|a0=_9 ZeyW z,z( y X1 ) n)

Let vy, denote the (positive real) root og, - --0p,_,(Br). We define the homoge-
neous polynomial dy » = dy o (co, a1, ,an) € Qlaw, - -+, o] as follows.
Ify Az thendy,=0;ify=1, thendy, =1, ify <z andy # 1, then

dy,a: = Zf}/zl Vi

where the summation runs over all subsequences (i1, -+ ,i,) of (1,---,m) such that
Y= [0—51‘1 o 'Uﬁirhed'
We define d, () € Qlay, -+, a] as follows.

d

y,[z] = dy1x|a0=_9 = dyax(_97 Qp, e )an)'

Note that for any y,y" € Wu with yW = y'W, one has ¢, ) = ¢z [y In

addition, one has d, ,] = d, [, provided x € W (following from Lemma 4.14).

Proposition 3.2 ([21]; see also chapter 11 of [24]). ¢, and dy, . are well-defined,
independent of the choices of reduced decompositions of x. The transpose of (czy)
is the inverse of the matrix (dzy) in the following sense

g Cop oy » =0 :E Cyopd for any x,y € Wys.
W, z,z0y, 2 z,y SEW,; z,xzy, y Yy af

Note that both summations in the above proposition contain only finitely many
nonzero terms.
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3.2. Explicit formula for Pontryagin product on H!(QK). Because of the
homotopy-equivalence between G/Py and QK , we interchange the notations G/Py
and QK freely. Let Tt denote the standard maximal torus of G with maxi-
mal compact sub-torus T. The T—eqmvarlant cohomology H% (g /Poy) is an S-

algebra with a basis of Schubert classes {&” | 2 € W}, where S = HZ (pt) =

Q[ag, a1, -+, o). Note that T C T is a sub-torus. The T-equivariant cohomology
H7(G/Po) is an S-algebra with a basis of Schubert classes {&” | x € W}, where
S = H}(pt) = Qai, - -, ap]. Furthermore, one has the following evaluation maps

ev: H(G/Po) = H7(G/Po) and ev : S — S such that ev(f&%) = ev(f)&*, where

f = flag,a1, - ,a,) € S and ev(f) = f(=0,a1,--- ,a,) € S. (See appendix 6.4
for more details on the above descriptions.)

The T-equivariant homology H! (G/Pp) is the submodule of Homg(H(G/Py), S
spanned by the equivariant Schubert homology classes {&, | z € W }%, which for
any x,y € W satisfy (8,,8Y) = d,,, with respect to the natural pairing.

The adjoint action of T on K induces a canonical action on 2K by pointwise
conjugation; that is, (t- f)(s) :=t- f(s)-t~! for any t € T and f € QK. The group
multiplication K x K — K induces a so-called Pontryagin product QK x QK — QK
by pointwise multiplication; that is, (f - g)(s) = f(s) - g(s) for any f,g € QK. The
Pontryagin product is obviously associative and T-equivariant. Therefore it induces
HI(QK)® HI' (QK) — HI (QK), which is also called the Pontryagin product. As
a consequence, HI (QK) is an associative S-algebra (see [35], [25]), and therefore
the structure coefficients b; , for the Pontryagin product

6.6, =) w DS

for x,y € W,; are polynomials in S. Now we state the main result of this section
as follows.

Theorem 3.3. For any x,y,z € W, the structure coefficient bg ,, for HI(QK) is

given by
Z cﬂﬂv[tx]cy,[tu]dzv[twu]'
A peQY
In particular, by, = b7, for all z, which implies 6,6, = 6,6,. Furthermore,
\] # 0 only if there exists 2z € tAW such that ¢, , # 0, Wthh holds only if
z -< :c In particular, there are only finitely many nonzero terms of ¢, ;,)’s and
Cy,[t,)’s once z and y are fixed. Hence, the above summation for b7 does make
sense.

Note that Py = Pa and W ; = WaAf. By replacing A with a general subset
Y C A, HI(G/Py) and &% can be defined in a similar manner. To distinguish
these with the case of our main interest G/Py, we denote &%, &Y for the case Y = ()
(note that Py = B). These notions can be extended to T-equivariant (co)homology
for G/Py for a larger T-action. The corresponding Schubert classes are denoted by

“&” instead of “&”.

Definition 3.4. Given x € Wye, we define the element 1Y in Homg(H3(G/Py), S)
to be the canonical morphism ¥Y = (WX)* : Hx(G/Py) — Hi(pt) = S, where (¥
is the T-equivariant map 1Y : pt — G /Py given by pt — 2Py

3We should note that we are using the equivariant Borel-Moore homology (see e.g. [13]).
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We define )Y to be the element Y = (.¥)* in Homg (HZ(G/Py), S), by consid-

ering the action by the larger group T.
Since we consider the cases Y = A and Y = () only, we simply denote

Yo =955 =95 S =¢g ¥ =90
The relation between (‘%2 and 1&2 is expressed in the following lemma.

Lemma 3.5 (Proposition 3.3.1 of [1]*). For any =€ W, &9 = D yew fc%yzﬁg.

Note that one has i, = 1, whenever W = yW (following the definition),
and that the canonical map . : HI (G/B) — HI(G/Py), induced by the natural
projection 7 : G/B — G/ Py, is given by (see e.g. Lemma 11.3.3 of [24])

P (O
6., ifzxe Wy
Proposition 3.6. (i) For any x € Wag, 42 ZyGW o dy, [x]G in HT(G/B).
(ii) For any x € W, ¢y = ZyGW;f dy 1216y in HI(G/Po).
(iti) For any x € Wy, 64 = 3 cov Ca [t

Proof. (1) It follows from Proposition 3.2 and Lemma 3.5 that
Y = Y Y b= Y 46
2EW ¢ 2€EW,p yEWye yEWy s

Note that LQ) is both T-equivariant and T—equivariant and idpt7 idg/p are
morphisms preserving the T-action. Hence, the identity idg, BOLQ) =0 01d
induces 1% o ev = ev o Y0 : H:(G/B) — S. Therefore,

U(85) = ¥ 0 ev(&F) = ev 0 Y(S]) = ev(dy,.) = dy [a)-
Hence, ¢ = ZyEW . dyy[z]Gg, where the summation contains only finitely

many nonzero terms since d, ) = 0 whenever y £ z. Thus 0 e HI(G/B).

(ii) Note that Lﬁ, Lg and 7 are all T-equivariant maps. Hence, the identity
12 =102 induces ¢, = 0 o 7 : H3(G/Poy) — S. Therefore,
0 0
Py = Ty (l/fx) = ﬂ*(ZyGWaf dya[a]Gy) = ZyEW [5516 = H (G/Po),

noting that the summation contains only finitely many nonzero terms.

(iii) Denote ¢}, , = cx y| __p- It follows from (ii) and Proposition 3.2 that
So= D, GaySy= D, D, dadyaSy= ), v
yeW%f yeW%f ZEW ZEWaf

Note that 1, = 1, whenever z € yW, and each coset yWW has a unique
representative of translation in Q¥ = Wae/W. Hence for any x € W,

63;: Z C;,Z'(bz: Z ( Z g:z ¢t Z Cz[t]wt

2€Wyy teQvy  zetW teQv
U

4The terminologies used in [1] and the present paper can be identified as follows: L, = ég and
O(u)(y) = () for j1 € H2(G/B).
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The above proposition was essentially contained in Peterson’s notes [35].

The Pontryagin product gives an associative S-algebra structure on the equivari-
ant homology HI (QK). The following proposition was stated in [35] by Peterson.
We learned the following proof from Thomas Lam.

Proposition 3.7. For any A\, € QV, the Pontryagin product of vy, and v, in
HT(QK) is given by VeVt = Vist, = Virp,-

Proof. Identify A € @QV with the co-character A : S' — T, which gives a point
A:S! = K in QK. These are the T-fixed points of QK. Note that ¢, is the map
H7(QK) — Hj(pt) induced by the map pt — QK with image ¢. Thus 9,1, is
the map Hi5 (LK) — Hi(pt) induced by the following composition of maps:

pt — QK x QK — QK, which is given by pt — (tx,t,) = tat,.

Note that pointwise multiplication on the group takes the loops A : St — T,
2 St — T to the loop (A + p) : S — T. Thus ¥y, ¥y, = theyt, = V.-

d
Now we can derive the proof of Theorem 3.3 easily.
Proof of Theorem 3.3. It follows from Proposition 3.6 and Proposition 3.7 that
66y = (Y conn¥e) (Y yimitn,)
AeQY HeQY
=2 e ColtalCult Ve Vi,
= ZWEQV Ca[t3] Oy ) Vs
= D Gt 16s
ApEQY zEW ¢
Hence, b7, =25 ueqv Coulealunlty) Bz, [t ) -

Remark 3.8. The equivariant Schubert structure constants for the equivariant co-
homology of based loop group QLK can also be expressed in terms of c, 1y and dy [y
(See appendiz 6.4 for more details.)

Note that ¢, 1,1, ¢y 11,) and d, ¢, ,] are homogeneous rational functions of de-
gree —{(x), —£(y) and £(z) respectively. Since b7 is a polynomial, we obtain the

following corollary.

Corollary 3.9. Let x,y,2 € Wy, one has b7, = 0 unless £(z) > £(x) + {(y).
Furthermore if £(z) = £(z) + {(y), then the rational function b , is a constant.

4. EXPLICIT FORMULA FOR (EQUIVARIANT) QUANTUM COHOMOLOGY OF G/B

In this section, we give an alternative proof of Peterson’s Theorem proved by
Lam and Shimozono, and derive the following combinatorial formula for quantum
Schubert structure constants N;“y;f‘%, which covers Main Theorem as stated in the
introduction.
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Theorem 4.1. For any u,v,w € W, A € QY with X = 0, the quantum Schubert
structure constant ijf;j\ for G/B is given as follows.
Denote A = —12n(n+1) Y, ., w; (which is in fact a regular and anti-dominant
element in QV). Let x = uta,y = vta and 2 = wigayy-
(1) If (X, 2p) # £(u) + L(v) — £(w), then N;} =0.
(2) If (X, 2p) = L(u) + L(v) — l(w), then

(a) The rational function ZM,AQGQV Ca[tx,]Cy,[try] 0z which belongs

Exp4az]
to Q[alﬂ, oo, aXl] s in fact a constant.

(b) The quantum Schubert structure constant N;‘j;f‘ is given by

woN
NEM= D" ot 1C00ta )05 0t0, 1y
A1, A2€QY

Furthermore, one has the following (by simplifying the summation)

WA
Nu,v - E cﬂﬂy[ﬂlth]cy,[vlth]d%[ﬂlh1+x2]’
(Al,Ag,’Ul)GFXW

where T = {(A1, A2) | A1, A2 3= A A + Ao < 24+ X A, A € QYD

The above theorem is in fact a direct consequence of Peterson’s Theorem and
Theorem 3.3, except for the last statement of it. As is shown in the above theorem,
our formula is a combinatorial formula, other than a recursive algorithm. Although
rational functions in equivariant parameters are involved in our formula, we can take
their valuations at a special point, so that the formula can be easily programmed.

In section 4.1, we calculate certain structure coefficients b7 ,’s for the Pontryagin
product on HI (2K). These calculations allow us to re-establish the equivalence be-
tween the torus-equivariant quantum cohomology of G/ B and the torus-equivariant
homology of QK after localization, which is explained in section 4.2. Finally in sec-
tion 4.3, we prove Theorem 4.1.

4.1. Calculations for structure coeflicients b; ’s. In this subsection, we ana-
lyze the summation in the formula for the structure coefficients b, ’s. We obtained
several useful formulas, including the following two as the main results of this
subsection. The proofs are elementary and combinatorial in nature. These two
formulas have been stated in [35] and proved by Lam-Shimozono [26] by a different
method using nil-Hecke ring and Peterson j-isomorphism.

Proposition 4.2. For any witx,t, € W, one has Gy, &y, = &

’u}t)\+”'

Proposition 4.3. Let o;ty,ut, € W, where 0; = 0, with i € I. Then one has
GaitAGutu = (u('wi)*u)i)Gut/\+H + Z <’7Va wi>6uo’_ytx+” + Z <7V7w’i>6uaqt)\+“+,yv 57
vels yel'2
where 'y and Ty are as defined in section 2.1.
Since the proofs of all the lemmas in this subsection only involves simple argu-
ments, we leave them in the appendix (section 6.1).

Each element o € Wy = W x QY can be written as = wty for unique w € W
and £y, € QV. Recall that for any p € QV, p is called regular if and only if

5The coefficient (v, w;) is always equal to zero if either v € I'; and uoytrgy, § Wopory €'y
and uoytyy iy v & Wy
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(A, ;) # 0 for all i € I; p is called anti-dominant if and only if (i, «;) < 0 for all
i € I. We denote by @V the set of anti-dominant elements in @Y. The minimal
length representatives in W, are characterized as follows.

Lemma 4.4 (sce e.g. [26]). Let A € Q¥ and w € W. Then wty € W if and only
if A€ QY and if (A, a;) = 0 then w(a;) = 0. When this happens, {(wty) = £(ty) —
l(w). Furthermore, £(t,) = (w(p), —2p) whenever p € QY satisfies w(p) € QY.

Recall that for any x,y € Wae, y < @ with respect to the Bruhat order (W, <)
if and only if y has an induced expressmn from a given reduced decomposition of
x. That is, if ¥ = [0p, -+ 0p,]red, then y = g, - 0p, for some subsequence
(k1,--- ,ks). As shown in the next proposition, the Bruhat order among certain
elements becomes quite simple. This result, which was mentioned explicitly by

Lusztig in section 2 of [30], is proved by Stembridge as a special case of Theorem
4.10 of [37].

Proposition 4.5. For any A\, pu € QY, t, < tx if and only if X < p; that is,
p—=A=3craiay witha; >0 for eachi € I.

Corollary 4.6. Let ty,wt, € W_. Then wt, <t if and only if A\
Proof. We use induction on ¢(w) and leave the details in section 6.1. g

Lemma 4.7. Suppose A € QV satisfies (\, o) < —2 for each i € I.Then ty € W
admits a reduced decomposition of the form tyx = wooou100 - - urog, where u; €
W for all j. That is, we can write ty = [0, - - 08,, |red Such that Bet1 = Bm = ap

and wo = [08, -+ 08, red- Furthermore for any w € W, there is a subsequence
1 <ip < -+ < <m such that wty = OBiy " OBy s and any such a subsequence
must satisfy (ia41, -+ ,ik) = €+ 1,--- ,m) for some 0 < a < k.

Denote [z] the coset zW for z € Wys. Each coset [z] contains a unique element
my;) € W of minimum length and a unique element of translation [, € QY. Note
that if m[,; = vita,, then ) = t,,(x,) = vitr, 0] '

Definition 4.8. The length of a coset [z] is defined to be £([z]) = £(m[,)). Let

v € Wy Wedefine (i) x < [2] if © < myy) and (ii) [2] S @ if mpy) < 2.
Lemma 4.9. Let x = wty € VVf and z € Wy, If x < z, then x < [z]. If
y = ut, € Wy, then cppy = cmy, whenever either A\ = p with A regular or

Ux) = L(y) + 1 holds.

For any z,y € Wat, we denote ¢, y = Ca y}a __4- To prove Proposition 4.2, we
analyze the effective summation first. In this case, it turns out that the summation
for the product contains at most one nonzero term as follows.

Proposition 4.10. Let wtx,t, € W;. If (i1, ;) < —l(wo) for all i € I, then
th)\GtM =C

/ /
wt)\1wt>\ctu1wt;LdUJt>\+M7[wt)\+;Lw71]6wt>\+u'

Proof. By Theorem 3.3, 6,6, = 3. 07,6, = > (32, 1, Coftr)Cyilta) D1 12]) O =
Note that c, ;,) = 0 unless z = [t1]; ¢y 1, = O unless y = [to]; d. [1,4,) = 0 unless

< tita, which implies z < [t1t2] by Lemma 4.9. Combining with Corollary 3.9,
we conclude that the effective summation for 6,6, is only over those (z,t1,t2)’s in
W x QY x QY satisfying £(z) > £(x)+{(y), z = [t1], y = [t2] and z < t1t5. Then we
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claim [t1] = [wt,], [t2] = [wt,] and z = wiry,. Consequently, [t1ta] = [wiry, w1,
Thus the statement follows by using Lemma 4.9 again.

It remains to show our claim. Indeed, we note ¢(z) < £([t1t2]) and denote
vity; = my,) for j = 1,2. Then wvaty, = my, < 1, and consequently pu < Ao
by Corollary 4.6. Therefore, Ao = p + s with K = Y, ;¢;f, in which ¢; > 0
for each i € I = {1,---,n}. If 37, ;2¢; > £(wo), then L(ty,) = (u+ K, —2p) =
O(t) = ;cr2¢i < L(ty) — £(wo), which deduces a contradiction as follows.

() + £y) < U([trta]) = L[orta, v vats,]) < Lvita, vy ata,)
< L(vity,) + (v tog) + L(ty,)
< U(x) + L(wo) + £(tr,)
< U(@) + U(ty) = 0(x) + U(y).
If >7,cr2¢i < l(wo), then for each j € I one has (Az,a;) = (u+ > o cie),aj) <
—l(wo) + 2¢; < 0. Hence, Ay € Q" is regular. Therefore v; 'vaty, € Wi and
U(z) + L(y) < 0(z) < U[trts]) = C([vrta,v] oatr,]) < L(vrta, o) oaty,)
< L(vity,) + E(Uflvgt)Q)
< U(x) + L(try) — L(vy ')
< Ux) +0(ty) — 0= L(x) + L(y)-

Hence, all inequalities are indeed equalities. Thus £(z) = £([tit2]), £(v] tvs) = 0,
vity, = x = wty and Ao = . Hence, z = Mt1ts] = Wiatp and v = vy = w. O

To prove Proposition 4.2, we need to compute the only coefficient as in the above
proposition. The following lemma is useful for calculations of certain structure
constants.

dv,u
H5€R+ B

Notation 4.12. Suppose that (A, a;) < —2 and (p, ;) < =2 for all i € I. Let
m = {(t) and p = {(t,). Because of Lemma 4.7, we can take reduced expressions

t)\ - [O—Bl T O—B'm]rEd a'nd t/»“ - [O—an+1 e O—an+p]Y8d SUCh tha‘t /8T+1 = /Ber’r’Jrl = Qo
and wo = [08, -~ 08, Jred = [0Byns1 " OBy, |red, where r = €(wo). Note that try, =
(08,08, "+ 08,1, )red - Denote Hy := g, ---0p,_,(B;) for 1 <i < m+p, and denote

Hj:=0p,,, 08,1 (Bmtj) for 1 < j <p. Clearly, Hp,1; = tA(H ).
Proposition 4.13. Suppose (A, «;) < =2 for all i € I. Using Notation 4.12, we

Lemma 4.11 (Lemma 11.1.22 of [24]). Forv,u € W, = u(Co—1wpu-1w0)-

u d,U—l w1
have cyt, uty = =m——~ for any v,u € W.
1= u(H;)
Proof. Due to Lemma 4.7, we can write vty = [0, - 0p, 08,,, " 08, ]rea With
(i1, i) a subsequence of (1,---,7) and vwo = [0g, - 0p, lrea. Furthermore
i = g k pErtl Em . . —r+k
if uty = ot - oﬂq’; g rogn for (Ciys " s EipsErtty s Em) € {0,177
4
then ¢p41 = -+ = ¢, = 1 and 051 ---aﬁ_" = uwy. As a consequence, we have
'k

Coty utsy = Cowo,uwo * mi() by definition. Note that {H17 .-+, H,} are all the

j=r+1
positive roots which are mapped to negative roots under w, (see e.g. Lemma 6.1).
Thus [[;_, Hi = [[3cp+ 8. Hence, the statement follows by Lemma 4.11. O
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Lemma 4.14. For any x,y € W and any w € W, one has dy yu = dq y.

Proof of Proposition 4.2. We first assume (u, ;) < —€(wo) for each i € I. Note

tA(Hj)\%:_e = Hj\%:_e. By definition, duiy,, wirs, = dwtywey [[i—; wirx(H;),

dy -1 =1, and cut, wiydwty,wt, = 1. Thus by Lemma 4.14 and Proposition 4.13,
w(dl,wfl) 2 £

C{th,wt;c;M,wt”dwh+w[wtx+uw71] =Cwtrwtx " Tp duwty wt H WA(HJ')\QO:,G
j=1 U}(H]) j=1

H§=1 wtx(Hj) _
Hence, we have G, &, = thxﬂu by Proposition 4.10.

In general, we take k € QV such that (k, ;) < —f(wp) and (K + p, ;) < —€(wp)
for each i € I. Denote x = wty,y = t,. Because of the associativity of the product,

Sty = 6aBt,,, = 62(6,61,) = (6.6,)8;, =) b7,6.6, = b7 6.

Hence, b7 , = 0if 2t # xty4i; by, = 1if 2t = Tty 44, that is, 2 = wiry,. O

1.

With similar arguments, we obtain the following two propositions. Recall that
foru e W,

Iy = {y € R* | f(uo,) = £(u) + 1},Ts = {y € R* | (uc) = £(u) + 1 — (+*,20)}.

Proposition 4.15. Let z,y € W with x = oty and y = ut,, where 0; = 04, for
some i € I. Suppose (A, ;) < —l(wp) and (p, ;) < —L(wo) for all j € I, then

o ’
626y = Cputy CyyQuta i futssu1Gutsy, +§ : AySuoiny, +§ : ByGuoyty iy
vel vED 2

I
where Ay = ¢y 1, ¢y d c

7 /
B’Y o 03"7Ut>\cy7ydua’¥t)\+u+'yv’[’U‘t)\+lb
/ CI d 1
Tuoy by Y uoyt, v CUuoy sy Y Juoyty g pqyvoyut]:

/ /
uavt;+u,[ut;+uu_1]+ Co oty Cy,uoqt, dua-yt)\+“,[u07t)\+“0,yu_1] )

u—1] +

/
vy

c
Proof. See the appendix (section 6.2). d

Proposition 4.16. Suppose that (A, a;j) < —l(wo) and (u, aj) < —L€(wp) for all j €
I. Let u,w € W and 0; = 04, with i € I. Then we have dy, o, = w; — u(w;). Using

Notation 4.12, we have w(dy-1 p-1) - dwts,, wirs, = H;n:tp w(Hj). Furthermore,
1

W e

“duty ., utsy, for anyy €Ty.

1
(2) ducr,ytk+u+,yv,utx+u = m “duty,, utyy,, Jor any v € Ta.

m
3) d B 1,21 uotuqv (H;j) s cT
Cut#,ucr,ytu+,yv WO\ gy Vs UOEN LV T , Jor anyry 2.

u(y +9)
Proof. See the appendix (section 6.2). d

Uy I WAL T
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Proof of Proposition 4.3. Denote x = o;ty and y = ut,. We first assume (\, ax) <

—l(wp) and {(u,ap) < —f(wo) and for each k € I. Note that t/\(f{j)‘ao:w =

I:Ij |a0:70. It follows from Lemma 4.14, Proposition 4.13 and Proposition 4.16 that

/ ! d _ “(dalu 1) u(dufl,u L ¢
R R | KT NS TART S H“
J j=1 J
(

w(w; —u Y w; H] Lu(H P -
o ) H A,

H] 1 u(Hj) = 1uI:I

= u(w;) — w;.

Otg—fe

Jj=1

For v € I'y, one has

/ / / /
337"“%cyaydua‘vt%JrlH[Ut%+lbu71] + Ca;,uozytxcy,ug,yt”duo’,yt/\+u,[u0'_ytx+uozyu*1]

uty i utri, “U’Y(dai,avu*) ) ua’y(du*%avu*)

C

=C C =
) T () TI uy () el
u(wz) — W; UO',Y(’LUZ') — w; da,yufl oyu~lt
= + cuos, (—————)d
u(v) Hgn.qp UU'y(Hg) ’Y( v ) u"wtkﬂmu"’vt%+u|a0=—9
+
7u(wi) —wi  uoy(w) —wi H;ﬂ \ uoy(Hjy) |
u(7y) H;ntp uo~ (Hj) u(y) 0=—0
_u(wi 70—7(wi)) _ <’YV ’LU'>
= = , Wi )-
u(v)
For v € I'y, one has
c;:,utxcg;,yduawtx+u+_yv Jutagpu—t] + c;:,ua,ytxcg;,ua_ytu+,yv duozyt)\Jr‘Hr,y\/ Juoyty g pqyvoyuTl]
— . dmf/\+u,ui§/\+H UG~y (daq,,ozyufl) ) - H;’;l U’U’YtlH"Yv (HJ) ‘
TG T e () (e e
:u(wi) —wi  uoy(wi) —w; H;nﬂ uoy(Hj;) |
u(y) [1;%, uoy (Hj) u(v) a0=-0
u\w; — o~ (W
_ ( ? ’Y( 1)) :<’Yv,wi>-
u(y)

Hence, the statement holds.
For general cases, the statement follows from Proposition 4.2 and the associativ-
ity and the commutativity of the Pontryagin product. U

4.2. Equivalence between QH’(G/B) and HI(QK). In his lecture notes [35]
D. Peterson stated that there is an isomorphism between the torus-equivariant
quantum cohomology of G/B and the torus-equivariant homology of QK after lo-
calization. However, the proofs in these notes are incomplete, and in [26], Lam
and Shimozono proved this result, using some of Peterson’s original approach to-
gether with Mihalcea’s criterion. For completeness, we describe the literature of
this equivalence.

The T-equivariant quantum cohomology QH7(G/B) is a torus-equivariant ex-
tension of the quantum cohomology ring QH*(G/B). (See section 6.3 for more
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details.) It is a commutative ring and has an S[q]-basis of Schubert classes o%’s
with S[Q] - @[ala L, Qny 7qn]

o' *p o’ = E ijf;j\qAU“’, where N;’j;,)‘ = ijf;f(oz) €S =Q[ay, -, an]
weW, eQV

When A =0, ijj N is equivalent to the corresponding equivariant Schubert structure
constant. The evaluation N[jfﬂal:...:a":o equals the quantum Schubert structure
constant N;}. A direct calculation of a general N} can be rather difficult.
However if v is a simple reflection, then the following equivariant quantum Chevalley

formula holds, which was originally stated by Peterson in [35] and has been proved
by Mihalcea in [33].

Proposition 4.17 (Equivariant quantum Chevalley formula). Let u € W and
$i = 0q, withi € I. Then in QHF(G/B) one has

o xr 0" = (ws — uw(w))o" + 3 (¥ o+ 3 (0, widgyo',
vETL v€el:
where I'y = {y € R" | L(uoy) = l(u) + 1} and Ty = {y € R" | L(uoy) = L(u)+1—
(7", 2p)}.

By evaluating at w; = 0, the quantum Chevalley formula (see [12]) is recovered.

Furthermore, the equivariant quantum Chevalley formula completely determines
the multiplication in QH}.(G/B). That is the following Mihalcea’s criterion, a
special case (P = B) of which is stated here only.

Proposition 4.18 (Mihalcea’s criterion; see Theorem 2 of [33]).

Denote Qlo, o] = Qlag, -+, ny g1, -+ 5G] and Qlo*!, q) = Q[at!, -+ ,atl, qu, -+, qn].
Let A= @,cw Q[a*t, qlo be any Qat!, q]-algebra with the product written as

o x oV = Zwy)\ C&”,ﬁ‘q)\aw where \ = 0. Suppose the structure coefficients C’}ﬁﬁ
satisfy the following

(1) (homogeneity) C) € Qa*!] is a homogeneous rational function of degree

deg(C;”,;})‘) = L(u) + £(v) — L(w) — (A, 2p), whenever C;U,’U)\ #0;

(2) (multiplication by unit) C =

id,v )

L, fA=0andw=v
0, otherwise
(3) (commutativity) " *x 0¥ =a’ xc" for any u,v € W;
(4) (associativity) (0% * o) x ¢¥ = 0% * (6% *x 0¥) for any u,v € W and any
simple reflection s; € W;
(5) (equivariant quantum Chevalley formula) For any w € W and any simple
reflection s; € W, the product of c® % o is given by

0% 0% = (wi — u(w)o" + 3 (Y, 0o+ 3 (0w ot
vETL vel:
Then for any u,v,w, A, we have
Co) = NY
In particular, C; = 0 if deg(C¥)) < 0, and ( @ Qlo, qlo™,*) is canonically

ueWw
isomorphic to QH}(G/B) as Q[w, q]-algebras.
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Remark 4.19. As shown in [34], the equivariant Schubert structure constants are
in fact nonnegative combinations of monomials in the negative simple roots. There-
fore, Mihalcea chose the negative simple roots instead of the positive ones for posi-
tivity reasons. For the same reason, we define the new algebra (HX (QK), o) below.
As a consequence, the canonical isomorphism after localization between (HL (QK), )
and QH}.(G/B) looks even more natural.

Define a new product e on HI' (QK) as follows.

S,06, = ZZGW? bz S, where l;fy = (—1)2(@*2(1)*2@)1);,1}.

Note that b7, is a homogeneous polynomial of degree £(z) —¢(x) — {(y). Thus
(HI'(QK), e) is canonically isomorphic to (HI (Q2K), ) as S-algebras. Immediately,
it follows from the definition of e and Proposition 4.2 that &, ¢ &;, = &4, for
any x,t, € W . As a consequence, {&; | t € QV} is a multiplicatively closed set
without zero divisors. It is easy to show that the following map ¢ is an S-module
isomorphism.

¢: HI(QK)[6;" | te Q'] — QH;(G/B)la™';
th; ° Gtu — CD\—uawa

where QH4(G/B)[q™ '] = QH4(G/B)[g; '|i € I]. As a consequence, the algebra
HT(QK)[&;! | t € QY] has an S-basis {¢ ™ (qr0®) | A € Q¥,w € W}. Therefore
for any A, B c HI(QK)&; ' |tcQV],Ae B = >, /\CZ’BQO L(gno™). Thanks to
Mihalcea’s criterion, it becomes a routine to give a proof of Peterson’s Theorem as
below, as was done by Lam and Shimozono [26].

Theorem 4.20. (i) ¢ : HI'(QK)[6; " | t € QY] — QH(G/B)[q™'] is an
S-algebra isomorphism.
(i) Let u,v,w € W and A € QY. Take n,k, 1 € QY such that x = uty,y =
Vly, 2z =wt, liein Wy and A = p—n — k. Then we have

Nyt = b,
Remark 4.21. The assumption “\ = 0”7 in Mihalcea’s criterion becomes obuvious
by using Proposition 4.24.

In section 4.1, we have given elementary proofs of Proposition 4.2 and Proposi-
tion 4.3. Since both of these two propositions play very important roles in the proof
made by Lam and Shimozono besides Mihalcea’s criterion, we give an alternative
proof of Peterson’s Theorem in this sense.

4.3. Proof of Theorem 4.1. Denote by v;tx, = mp,) € W; the minimal length
representative in the coset [t;] = ;W as before, where t; € QV,i = 1,2. Note that
for any x € W one has that ¢, ;) = ¢g [v;¢,.] by definition, and that Aoty =

-1 1 = d, following from Lemma 4.14. Therefore for
T,01tN Uy V2t Vs l7v2t“2_1"1(%1)+%2 &

any x,y,z € W,

z _
bx,y = E : Ca[t1]Cy.[ta] Dz, [t1t2] = E : cm,[vlth]Cy,[v2tx2]dz,[mtu;lvl(MH)\z]'

t1,t2€QY vitag vata, €W g

The following lemma is contained in Lemma 13.2.A of [15].
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Lemma 4.22. For any A € QV, there exists a unique X' € QV and some w € W
such that N = w(\). Furthermore, N < .

Lemma 4.23. Let A\, Ay € QY with (N, ;) < —2€(wp) for all j € {1,2} and i € I.
Let vi,v9 € W. If v1 # v, then e(tvglvl()\l)_,’_)\?) < (A1 + A, —2p) — 4l(wy).

Proof. Take w € W such that w(vy 'v1 (A1) + A2) € QY. By Lemma 4.22, one
has wv;lvl()\l) = A + pq with gy = 0. If w # 1, then w = [0, - - 08, ]rea With
k > 1. Note that w(\y) = AQ*Z§=1<>\2,ﬁj>’YJ\-/, where v; = 0p, ---0p,_,(B;) € RT.
Therefore, it follows from Lemma 4.4 that

E(tvglul(,\l)+,\2) = (M1 + p1 +w(A2), —2p)

k
=M+ A+, —2p) + Zj:1<>\2, By 2p)

k
= (M + A2, —2p) — (11, 20) + (A2, B1) - 24+ D (B (7 20)
j=2

< <)\1 + Ao, —2p> —0- 26(&00) -240.

If w =1, then w(vy "1 (A1) + A2) = Xo 4+ w' (M) with w’ = vy 'v; # 1. With the
same argument as above, one has g(tﬂ;lyl(Al)+A2) < (A + Ao, —2p) —4l(wp). O

Proposition 4.24. Let xz,y € W; with x = uty,y = vt.. If (n,a;) < —50(wo)
and (K, ;) < —5l(wg) for each i € I, then we have

6,6, = Z Z cﬂ?y[”lt)\l]cyﬁ[vlt)\g]d'UJtug['UltA1+A2]G'Wtu'

wipEW o v EW, A1, A2€QY
A1 =N, A0 =Rk, Ao
() >e(ayre(y) LTTARERALF 2SR

Proof. Note that 6,6, = ZzeWg&;@(z)Z@(:c)-{-é(y) b; ,S: by Corollary 3.9. Now let
z=wt, € W with £(z) > {(z) + £(y) = (n+ K, —2p) — L(u) — L(v).

Note that c, Jorty,] # 0 only if vity, < ut, < t,, which implies A1 = n;
Cy, [vats,] 7é 0 only 1f UQt)\2 < vty =< t., which implies Ao > k. Hence, \; =
N+As=n+>cr0i0), Ao =K+ =K+, b with az,b; > 0 for each i € I.
Note that dz,[wtufl # 0 only if z Ugtvglvl()\l)_,’_)q, in particular only if

]
vi(A1)+A2
E(vgtvglm()\lHAz )22 Uz) > Utyyn) — L(u) — £(v) > L(tyrs) — 20(wo). Furthermore,
g('UQtvglvl()\l)+A2) vty vy Yuata,)
< vrtay) + vy Mv2) + £(tx,)
= (A1, =2p) = €(v1) + Loy "v2) + (A2, —2p)
=+, =20) =23 (ai+bi)a),p) = Lvr) + L7 ' v2)
< U(tyin) 22 (a; 4 b;) — 0+ £(wp).

Hence, 2, (a; +b;) < 30(wp). In particular, 0 < 2a; < 30(wo),0 < 2b; < 3€(wo),
(A, ) = (n, i) +ailay o) + 37054 a5(a ag) < =5(wo) + 3¢(wo) + 0 = —2£(w)
and (A2, ;) < —2(wy) for each i € I. Therefore, v1 = vg; since if v; # v, then a
contradiction comes out following from Lemma 4.23:

E(Ugt ’111()\1)+k2) < E(Ug) + E(t,\1+,\2) 4[(&)0) < E(WQ) + g(tn—i-n) — 46(&]0).
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So far, we have shown that the effective summation for z = wt,, runs over those
elements vity,,vity, € W with Ay = n and Xy = k. Note that A, A2 € QV are
regular, then vity, € Wy for any vy € W. Note d. 4,4, ,,,] # 0 only if wit, <
V1ta;+a2 = Er;42,, Which implies A1 + A2 < . Thus the statement follows. O

Due to Peterson’s Theorem (Theorem 4.20) and Theorem 3.3, in fact, we obtain
an explicit formula for all the equivariant quantum Schubert structure constants
N;‘j;f"s. Namely we just need to find 0, k, u € Qv such that © = ut,,y = vt.,z =
wt,, liein W_; and A = p—n—x, and then compute N;“j = (fl)l(z)’l(z)’l(y)bj’y. In
particular, we obtain a formula for quantum Schubert structure constants ijf;j\ by
taking the non-equivariant limit (v, -+, ay) — (0,---,0) at the origin. Although
Ca [t1]s Cy [t,] are rational functions, the summation by, = Ztl,tz Ca,[t1] Cy,[t2] Dz, [t1 8]
turns out to be a polynomial in «a;’s so that the non-equivariant limit does exist,
which will equal 0 if the degree does not match. Furthermore, if the degree matches,
then b7 turns out to be a constant function (Corollary 3.9) so that we can take
a non-equivariant limit at any point. In order to compute ijf;j\’s in practise (by
hand or by computer), we would like to choose n,  such that ¢(x), {(y) are as small
as possible. However, in order to give a neat formula, we would like to choose
A = n = k that satisfies the assumption of 4.24. For instance, we have chosen
one such A in Theorem 4.1, in which the remark “which is in fact a regular and
anti-dominant element in QV” ensures that ut, vta, wteayy do lie in W

Proof of Theorem 4.1. Note that N]jf;j\ = ]\773%)‘
equivariant quantum Schubert structure constant N;‘j;f‘ € Qlag, - ,ay) at the
origin (ay, - ay) = (0,---,0).

It follows from Theorem 4.20 that ]\773%)‘ = (—1)5<Z)_£<x)_€(y)b§’y for z,y,z € W
with © = ut,,y = vts, 2 = wt, and A = p—n— k. Note that b7 is a homogeneous
(rational) polynomial of degree ¢(z) — £(x) — £(y) = £(t,) — L(w) — (L(ty) — L(u)) —
(£(ts) = £(v)) = L(u) + £(v) = L(w) = (A, 2p).

(1) If (A\,2p) > L(u) + £(v) — ¢(w), then it follows form Corollary 3.9 that
bz, =0 and therefore N2} = 0. If (X, 2p) < £(u) + £(v) — {(w), then b7,
is a homogeneous polynomial of positive degree ¢(z) — ¢(x) — £(y) > 0. The
evaluation of b;  at the origin is 0, and therefore N;‘j;f‘ = 0.

(2) If (\,2p) = L(u) + £(v) — £(w), then b; is a constant polynomial. In
particular,

N;U;))\ _ N’w,)\

=07, =07,
UV |y =++=0,, =0 Y loay==a,=0 TYloy==ap,=1"

., the evaluation of the
o ==a, =0

Take n, x, pu € QV such that x,y, 2 € W with x = ut,,y = vt., 2 = wt,
and A\ = u —n — k. This can be done as follows.

The possible determinant of the Cartan matrix ((aiv,aj>) is 1,2,3,4
and n + 1 (see e.g. section 13 of [15]). As a consequence, the element
A= —12n(n+1) Y, wY is in the coroot lattice Q. Furthermore, A € QV
and (A, q;) = —12n(n+ 1) < —5|R™| = —5l(wp) (see e.g. [15]). Note that
A=Y craiay =0 and (A a;) < 2a; < (N, 2p) = L(u) + L(v) — L(w) <
20(wp). Thus (2A + X\, ;) < 0 for each i € I. Let = uta,y = vty and
z =wtaayx. Then z,y,z € Wi and A= (2A+)X) — A - A.
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Hence, the first formula follows from Theorem 3.3 and Theorem 4.20,
and the second formula follows from Proposition 4.24 immediately.

O

The following vanishing criterion is also a consequence of Peterson’s Theorem.

Proposition 4.25. For any u,v,w € W and A\ € Q" with X = 0, we take n,x € QV
such that x = ut,, andy = vt, lie in W and we denote p = n+r+X. Ifwt, ¢ W,
then the equivariant quantum Schubert structure constant ijf;j\ vanishes.

Proof. Denote d = £(u) + £(v) — £(w) — (A, 2p). Take M € N with 12(n + 1)|M
and M > 0 such that B = —M ., w;/ € QY, which does exist (following the
proof of Theorem 4.1), and p+ 2B € QV is regular. Then atp, ytps, wty, 1o € W

Therefore it follows from Theorem 4.20 that N3} = (fl)db;’zgﬁg. On the other
hand, it follows from Proposition 4.2 that

G566yt = 64,,6,.6, =6 E b?GzE by /Stoy-
rtpPytp top Py top W, T,y 2 sew z,y O ztap

Therefore for ztop € W, bZl2B £ only if z € W,s. Hence, fo,;f\ —0. 0

ztp,ytp

As we will see in section 5.1, Proposition 4.25 is useful when we need to compute
the quantum Schubert structure constants for G/B by hand when the rank of G is
not too big.

5. EXAMPLES

In this section, we give two examples to demonstrate the effectiveness of our
formula. To make the procedure precise, the first example is simple and includes
some more explanations.

5.1. Type As. G = SL(3,C); B C G consists of upper triangular matrices in G.
In this case, X = G/B ={V; < Vo < C? | dimc V; =i,i =1,2}.

A = {ag,as}, RT = {a1,a2,0 = a1 + as}. Denote s; = 0,,, then one has
W = {1, s1, 82, $S152, $281, 515281} = S3. 05152 x g5152 5152 4 5251 59251 4 55251
O5152 % 818251 | 59251 5 515251 gp g¥15251 x g515251 ¢ QH*(X) are the only products
that are not given by the quantum Chevalley formula directly. As an application
of our theorems, we compute one of them in details as follows.

General discussion: For u,v € W with £(u) > 2 and {(v) > 2, 0" x oV =
Swa Nraao® . Note that N = 0 unless A = arcf +agey = 0 and 2(a1+az) =

w,v
(A, 2p) = L(u) +L(v) — L(w) >4 — L(w) > 1, in which case gx = q7*q5*. Note that
-0V = —af —ay € QY is regular. Therefore, x = ut_gv,y = vt_gv € W;. Let

z = wt_ggvyx. By Proposition 4.25, Theorem 4.20 and Theorem 4.1, we have the
following

(i) If =& Wy or U(z) # £(x) + L(y), then NP> =0.

(i) If z€ W, then

NN =i, = D CoinlCuliale it = D Cofurtn,|Colvatay)dafuat,

t1,t2€QY

I

—1
g v1(A1)+Ag
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where the effective summation runs over those wvitx, = my, € W satisfying
vity, <X @ and vaty, <X y. Furthermore if x # 1, then d ,) = 0 as £(z) > £(y) >
L([t2]). In particular if x,y # 1, then we do not need to consider the case vity, = 1.

Calculation for the case u = s;s2 and v = s15251.

In this case, z = s152t_gv = S350 and y = s18251t_gv = So. A = a1y + asay
with a1,a2 > 0 and 2(a; + a2) = l(u) + £(v) — l(w) = 5 — {(w). Hence, (a1, a2) =
(1,1),(2,0),(0,2),(1,0) or (0,1).

If (a1,az2) = (2,0), then z ¢ W; by noting —20Y + X = 2ay & QV. If (a1, az) =
(1,0), then A = aq, (w) = 3 and w = sys281. Since (—260Y + a1, ;) = 0 while
w(aq) = —as € RT, 2z ¢ W_;. Similarly, we can show z ¢ W if (a1,a2) = (0,2) or
(0,1). Hence, N;* = 0 unless (a1, a2) = (1,1).

If (a1,a2) = (1,1), then {(w) =5 —2(1 + 1) = 1 and therefore w = s1 or sa.
Hence, 0% % 0¥ = C1q1q20°* 4+ C3q1q20°2 for some real numbers Cy and Cs.

Note that 1 # wvity, < = = s250 with vity, € W, implies that vity, = sg or
5250. 1 # vaty, <Xy = so with vaty, € W, implies that voty, = so = y. Hence,

z —
bmvy - cxv[SU]Cyv[y]dzv[o'Gt—GV—GV] + 0357[3250]cya[y]dza[getogslsz(*ev)*e\/]

o / / /
- CSQ80,806807Sod27[‘79t72ev] + 08280,82806807Sod27[‘79t7a2v79V]'

1 1
/ = (— 1 . = —
Note that Cop.50 = (—1) 50(a0) ‘agz—é 7
1 1
C/, ) = 71 2 . _ .
250,50 ( ) 05250(050) ‘ange 0529,
ara = VP | =] =
$250,5250 sa(az)saso(ao) =70 azsa(ag) 0=l sy
Note that opt_29v = [s052515250]red and oot oy _gv = (8052518051 ]red-
Now for w = s1 and A = 0¥, we have z = s11_gv = [$25150]rea- Therefore
dzy[cretfwv] = d525150,[5052515250] = 50(a2)8082(041)50525182(040)‘ao:_e = —a192;
dz,[agtfaé/fev] = dSQSlso,[8082818081] = 80(a2)5052(a1)808281(ao)‘a[):_g - 70‘%9'
1 -1 -1 -1 a1 a1
H C,=0b =— —(—,6? —(—a20) = —+(——) =0.
ence, () 20 T oyd (—a1 )+a2a1 9 (—aif) a2+( 042)
Now for w = sy and A = 0V, we have z = sat_gv = [s15250]rea. Note that
dza[getfze\/] = d818280,[808281s2so] = 5052(a1)505251(042)50525152(040)‘a0=_9 = 70292

and that d. 551,01 = dsysss0,[s0s2515051] = 0 @S $18280 £ 5082818081. Therefore,
2
—pz =L =1 (_ 2y —
Cg—bx,y— Y 0 ( 0&29 )—1.
Hence,

o152 % g1 = 10002

Similarly, we can compute quantum products for the remaining cases.
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5.2. Type Bs. G = Spin(7,C); X = G/B={V; < Vo < V3 < C7 | dim¢ V; = i,
(Vi, Vi) = 0,i = 1,2,3}, where (-,-) is a quadratic form on C7. See e.g. [15] for
o—o==0; 0 =01 +2as+2a3 = s98352(v1), 0¥ =af +2a3 +ay, |RT|=09,
@] Q2 Q3

W is generated by simple reflections {s1, s2, s3}, |W| = 48, 09 = [$2535251525352]red-

Calculation for ¢" x oV, where u = s152535152 and v = $35152535152.

Note that (—0Y,as) = —1 < 0, (—6Y, ;) = 0 while u(;) 3= 0 and v(«;) 3= 0 for
i = 1,3. Hence, it suffices to take A = —0Y. Then one has = ut_gv = [$35250]red
and y = vt_gv = [$250]red. Note that u(—0Y) = oY +ay and v(—0") = of +ay +ay.
Denote m; the minimal length representative in the coset tW for t € QV, then one
has

z —
by, = E :Cw,[vltxl]Cy,[vzth]dz,[mf,m]a

where vity, = my, € W,; and the effective summation runs over those satisfying
1 # vity, < xand 1 # vaty, < y. Explicitly, the possible nonzero terms are listed in
the following table, where we denote n = —2a) —3ay —2ay, K = —2a) —2ay — oy
| ([vlt}\l]7 [v2t>\2]) | ti-to | Mty ty | [mt1t2]red |
([s0], [s0]) | tov+ov opt_ogv 505253525152535250
( 50], [5250 ) t9v+v(,9v) 5182838281838253tn 505253515250
([s250], [s0]) Ly(—0v)+ov 5152535251535253ty 5052535815250
([s250], [5250]) | to(—0v)4u(—6) vl _ogv 82505253525152535250
( 528180], [50 ) tu(,gv)Jrgv 81828183828153tn 50835253515250
([s25150]; [5250]) | tu(=6v)4v(—0v) 5152535281tk 5052535250

Note that s3so = sps3 € soW. By definition,

/ (=1° (=1°

/
Calso] = Chnsoso s 5o 50 a5 =
x,[s0] 535950,50 T Cs35950,5350 a3a280(a0) 33(a3)53(a2)8350(a0))‘0‘0:*9
p— _2 .
aof(an + 203)’
(-1 i
Cy [s250] = Cl = | = ;
J[s250 §39250,5250  yg59(ain)s280() '0="0  asas(an + as + 2a3)
(—1)° -1
Cx[sfss]:C/n,, sasg = ‘ = :
1835280 §35280,835280 oo (vg)sg2(2)sgs2s0(cp) '0="0  ag(as + 2a3)(a1 + az)
(-1 |
Cy,ls0] = Csas0,50 — | =0 ;
’ az8o(ag) ' *0= sl
(=1)? —1
Cy.[s2s0] = C =—— = .
Yls280 5280:5250 g0 () s280(v0) '0="0  ag(aq + az + 2as)

Let z = wt_sgv4x. Then N} # 0 only if z € Wy and £(z) = {(z) + £(y) = 5.
Note that the only possibilities are z = 5953515250, S152535250 O S0S2535250.

For z = 51859835250 = wi_opvyx, We have w = sgs352 and A = o + 20y + ay.
Note that d. ,¢,] # 0 only if 2 < my¢,4,. Thus only d. (54t ) and d. [, are
nonzero. Furthermore, we have

Az (oot _pov] = —h*(an+as)(az+2as3), Aot _ygv] = asaz(an+2a3) (a1 +an+2a3)2.
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Hence,

by = Ca,ls0]Cy,[s012, (00t _opv] T Ca,l5250]Cy,[s250] Dz, [0t 5]

20002 (a2 + a3) (g + 2ar3) 3 azaz(ag + 2a3) (a1 + ag + 2a3)?
o af(ag + 2a3) - anl asag(aq + ag + 2a3) - as (g + ag + 2as)
_ 2(a2 + a3) 3 ag + 203 1
9 a9

For z = $253818280 = wt_ogv4x, We have w = 535182 and A = o) + 2o + .

d. = 7293(a2 + ag)(aq + as + as);

taev]
Do ftyu o ovy) = —0(a2 + az) (a1 + a2 + az)(ar + ag + 2a3)%;
dz,[tv(,wv)] = —az(a; + ag + 203)%(203 + 200 + A3 + 6aia3 + dasas + 4ad);

= —agf(a1 + a2)2(a1 + ag + as);
=0.

dZJtu(feVHeV]
dza[tu(79V)+u(79v)]

Substituting them in the summation for b; , and simplifying, we obtain b; , = 1.
For z = 5052838280 = wt_ogv 4, We have w = $182838251 and A = 2oy + a.

A2 ltyou] = 793(a% + 3 + 3a§ + 31z + 6asas + 204%);
dz,[tgv“(fgv)] = —92(a1 + as 4+ a3)(on +az + 2043)2§
dz,[tv(,wv)] =—(q +ag+ 20(3)2(04? + 2001009 4 33 + apaes + 204%);

—02(c1 + a2)* (a1 + o2 + as);
—a10(a1 + ag)(aq + as + as)(aq + g + 2a3).

dZJtu(feVHeV] =
dzv[tu(fevwv(fev)] =

Substituting them in the summation for b;  and simplifying, we obtain b; , = 1.
Hence, we obtain the following

S§182838182 838182838182 __ 2 528382 538182 2 S§182838281
o *a = q1q393(0 + 0% + gyq30 :

6. APPENDIX

6.1. Proofs of lemmas in section 4.1 and Corollary 4.6. In this subsection,
we first prove all the lemmas in section 4.1 after reviewing some basic facts on affine
Weyl group (as a Coxeter group). Then we give the proofs of all the lemmas in
section 4.1 as well as Corollary 4.6.

Recall that S = {0; | i € Iy}. Denote T = {xox™! | 2 € Wag, 00 € S} =
{0, | v € RL}. Let z,2’ € Wy We say x covers z/, denoted by 2’ — z or
2/ 33, if there exists some o, € T such that = 0,2’ and {(z) = (') + 1.
We say ¢’ < x with respect to the Bruhat order (W,s, <), if there exists a chain
¥ =1z — xg — - — xp = x. We list some well-known facts (from [14] and [16])
for the Coxeter system (W,t,S) as follows.

Lemma 6.1. Let z,y € W withx = [0, - - - 08, |red- Denotey, = op, ---0p,_, (Bk)-
(a) If y—x, then there exists a unique j,1 < j < r, such that x = o,y and
Y= [051 0B, 108541 7" 'Uﬁ,.]red-
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(b) If y < =, then y = [0, -+ 0p,_lrea for some subsequence (ki,--- ,ks),
which we call an induced reduced decomposition of y from x = [og, -+ 08, ]red-
In particular, if y < © and £(x) = €(y) + 1, then y 4 for a unique j.

(c) (Lifting Property) Let o, € S. Suppose (o;x) > (z) and L(o;y) < L(y),
then the following are equivalent:

(i) o5z < y; (il) = < y; (iil) = % 0;y.

(d) {7, wh={veRt |z (v) e =RL};  L(zy) < L(x)+L(y).
(e) Let v € RE. l(oyz) <{l(x) <= 27 (y) € —RL.

Lemma 6.2 (see e.g. [32]). For anyy € R", ((oy) < (v¥,2p) — 1.
The following lemma is on the property of the longest element wy in W.
Lemma 6.3. wy(—6) =46.

Proof. (We learned the proof from Victor Reiner.) The highest root 6y € R is
characterized among all the positive roots by the property that (6, ) > 0 for all
a;’s. Note that wo(—6) is a positive roots. Furthermore for any simple root «,
U0 (as)) = Lwooiwo) = £(wo) —L(oiwo) = £(wo)— (£(wo)—£(0;)) = 1, which implies
that wo(a;) = —a; for some j € I. Note that wy = wo_l. Hence for 6y = wo(—0),
(0o, ) = (wo(—0), ) = (0, —~wo(a;)") = (0,a]) > 0. Thus by = 6. O

The next lemma is a consequence of Lemma 4.4

Lemma 6.4. Suppose A\ € QV is anti-dominant and regular. Then for any w,u €
W, we have (i) wty < tx; (ii) wtru <ty implies u = 1.

Proof. Write w = [0p, - - 0p,]red. Denote x; = o, ---0p,tx for each 1 < j < r.
Since \ € Qv is regular, z; € W for each 1 < j < r+1, where we denote z,41 = ty.
(i) €(xj1) = L(tx) —L(og,,, - -0p,) = L(tx) — (r — 7). Note that x;, = op,2; and
Uxjp1) = L(xj) + 1. Thus z; < xj41 for 1 < j <r. Hence, wty = 21 < &r41 = ta.
(ii) Note that x; € Wi for 1 < j <r+1. Hence, £(xju) = {(x;)+L(u), L(op,z;u)
l(zjp1u) > L(xju) and L(og,zrp1) = L(xrq1) — 1 < L(xpq1). Therefore if z;u
Try1, then wj1u = 0g, 750 < xp41 by Lemma 6.1. Hence, z1u = wiyu < T\ =
implies txu = Zy41u < Xp41, by induction on j. Thus £(u) =0 and u = 1.

Of |

Proof of Lemma 4.7. By Lemma 6.3, tyx = t_gvirtov = woogt_gvopwotrtov. No~te
that for eachi € I, (A +0Y,a;) < -2+ (Y, ;) < —2+1= —1. Hence, A\+60" € QV

is regular and we have ogwotrxygv € W;. Hence, any reduced decomposition of
ogwotrtev must be of the form uy0¢ - - - uy00. Furthermore,

L(ty) < U woogt_pv) + L(ogwolrrev)
= {(wo0oo) + £(trtev) — £(Tewo)
=l(wo) + 1+ (X+6Y,—2p) — (L(wo) — £(09))
=1+ L(ty) — (0Y,2p) + £(0g)
<1+ L(tn) —(60Y,2p) + (0Y,2p) — 1 = £(ty).

Hence, all inequalities are indeed equalities. Thus t) admits a reduced decomposi-
tion of the form wooguiog - - - u-00.
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For any w € W, we have wty < t) by Lemma 6.4. Thus there exist a subsequence
(i1, -+ ,ix) as required. Furthermore any such a sequence gives an expression of
wty of the form wty = ujogujog---ulog with uf, < wp and u3 < u; for each
1<j<r If u; # u; for some 1 < j < r, then E(ug) < {(uj) — 1. Note that

th = WoooU100 - - Ur0o = W tuhogulog - - - ul.og. Thus

E(wo)—l—r—i—l—i—z

Lher L(ug) = l(woopurog -+ - Uur00)

-1,/ ! !
= L(w™ ugoouiog - - - Up.0p)

<lw tup)+r+1+ ZKKT O(ul,)

<llwo) +r+1+L(uj)—1+ Zk# O(uy)

= lwo) + 7+ Zlg@ O(uy).

This is a contradiction. Hence, the statement follows. That is, induced decom-
position(s) of wty must be of the form wgoouiog - --uro¢ (in which uy = wwy =
Oiq ° Uia)- [l

Proof of Lemma 4.9. Write m[,; = ut,, € Wy, then 2z = ut,w for some w € W.
Let w = [04, -~ 08, ]rea and denote Z = ut,op, -+~ 05, ,. Note that l(ogzx™!) =
U™+ 1>z and £(op, 27 1) =4(z71) =1 < l(z71). Sincex < 2, 27t 5 271
and therefore 27 < og,27" = 27! by (c) of Lemma 6.1. Hence, x < Z with
0(Z) = £(z) — 1. Hence, the first half of the statement holds by induction on ¢(w).

To prove the second half, we recall that c, [,) = deyw c;’g. Given y € yW, we
have y = ut\v for some v € W. Note that c;,g # 0 only if § < x. Suppose A = p
and A is regular, then utyv < wty < t) implies v = 1 by Lemma 6.4. Suppose
L(x) =Ll(y)+ 1. If § # y, then £(g) > £(y) and therefore § = = follows from § < z,
which contradicts to the uniqueness of the minimal length representative in each
coset. Hence, ¢, [, = c;,y if either of the two assumptions holds. ]

Proof of Lemma 4.14. Let y = [05, --- 08, ]red and w = [0p,,, - -+ 08, Jrea- Then

Brt1s  Prts € A, B = g and yw = [op, -~ 0p,, Jrea- For any subsequence
J=(j1,"- ja)of (1,--- ,k+s), we denote 05 = gp, ---0p, . Suppose r = [0 ]red,
then J must be a subsequence of (1,--- , k). Therefore, dg 4 = ds,y by definition.

Indeed, if J = Jy | |J2 with Jo C (k+1,--- ,k+ s) nonempty and J; C (1,--- , k),
then oy, € W and l(z(0,)"Y) = Uos,00,(05)7 ) = o) < || < |J| = (),
which contradicts to the fact that x is of minimal length in the coset V.

O

Proof of Corollary 4.6. We can assume A, i to be regular. (Otherwise, we take any
regular 7 € Qv and consider X\ + 7, u + 7.) We claim that wt, < t\ <= t, < t\.
Hence, the statement follows from Proposition 4.5 immediately.

Indeed, we have wt, < t, by Lemma 6.4. Suppose t, < t\, then we have
wt, < tx. Suppose wt, < t)\ Write w = [og, - - 08, |rea- Note that K(ngwt ) =
0t,) — l(w) +1 > L(wt,) and £(og,tr) = £(tx) — 1 < £(tx). Hence, wt, < t\ holds
by Lemma 6.1, where w = og, w with £(10) = ¢(w) — 1. Thus we can deduce ty < ta
by induction on £(w). O
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6.2. Proofs of Proposition 4.15 and Proposition 4.16.
Lemma 6.5. Let x,y,z € W, with x = oty and y = ut, where i € I. Let
t; € QY and denote vity, = my,), j=1, 2. Suppose x = [t1],y = [t2], 2 < [t1t2] and
0(z) > L(x) + L(y). Then only the following two possibilities can happen,

Case A:  (([t1ta]) = €(x)+L(y)+1; Case B:  (([t1t2]) = £(z) = L(z)+L(y).

Proof. Note that z < [t1t2] implies £(z) < ¢([t1t2]). Therefore,

() + Ly) < €([trta]) = €([vrta vy vaty,])
< (vitx, vy toaty,)
< l(vity,) + L) + L(vaty,)
=L(tr,) + L(vaty,)
< U(tx) + L(y) = £(x) + 1 + €(y).
Hence, only two cases (Case A or Case B) are possible. O

Lemma 6.6. Under the same assumptions as in Lemma 6.5, we assume \ is
regular. If Case A occurs, then vity, = uty and vaty, = ut,. Furthermore, only
one of the following three possibilities can happen,

a) 2= ultxyy;
b) there exists v € I'1 such that z = uoytry,;
c) there exists v € T'y such that z = w0y taqputyv -

Proof. Since Case A holds, it follows from the proof of Lemma 6.5 that \; = A
and vaty, = ut,. Furthermore,

Uz) +Lly) + 1= U([tat2]) = ([t2t1]) =

Hence, ¢(u~'v1) = 0 and therefore v; = u. Hence, [t1t2] = [utyu™ ut,] = [utrs,].

Note that £(z) + {(y) < (z) < l(x) +L(y) + 1 = L([utry,]) = L(utriy).

If {(z) = £(x) + (y) + 1 = £(utrs,), then the condition z < [utr,] implies that
z = utyy,. This is just case a).

If £(z) = £(x) + £(y) = L(utry,) — 1, then the condition z < [utyy,] implies that
PR ut 4, for some y+md € R Note that m > 0 and that z = Oy tmsUbrgy =
O Ul =1 (y)V4rgn € Wop. Since £(oyqmsutry ) = (2) < £(utry,), it follows from
Lemma 6.1 that (utx,) ' (v +mé) = u(y) + (m+ A+ p,u"'(7)))d € —RE.
Hence, m + (A + p,u~'(y)) < 0. Since A+ g € Q¥ and m > 0, we must have
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u~1(y) € RT. Therefore,
Utney) — ) — 1= £(2)

= (mu™' ()" + A+ p, —2p) — £(oyu)
= Utapp) —m(u (1), 2p) — L(uoy-1,)
< Utrgp) —m{u™ (7)Y, 2p) — L(u) + £(oy-1(+))
< Utagp) —m{u™ ()Y, 20) = £(u) + (u™ (1), 2p) = 1.

Hence, (m—1)(u=1(v)¥,2p) < 0. Since u=t(y) € RT, (u=1(v)¥,2p) > 0. Therefore,
0 < m < 1; that is, m = 0 or 1. Denote ¥ = u~ (7). Note that ¥ € R™.
If m =0, then ¥ € R", 2z = uostry, and (uos) = £(u) + 1. This is just case b).
If m =1, then ¥ € R™, 2z = uostry,y5v and l(uos) = £(u) + 1 — (3V,2p). This
is just case c). d

Lemma 6.7. Under the same assumptions as in Lemma 6.5, we assume that
(A o) < —Llwo) and (u, o) < —L(wg) for all j € I. If Case B occurs, then
only one of the following two possibilities can happen,

a) there exists v € T'y such that vity, = uoyty, vata, = uoyt,, 2 = uoytryy;

b) there existsy € T'y such that vity, = uo,ty, vatn, = UT LtV , 2 = UOYEAf gy -

Proof. Note that we have z = [t1t2] in this case. Since vity, < oitx < th, A M1
by Corollary 4.6. Hence, £(tx,) = £(tx) — 2M for some M > 0. Therefore,

Uz) + £y) = U([trta]) = L([vrtr, o7 "vata,)

(
< Uity v] togty,)

< L(vity,) + Lo ) 4 L(vaty,)

=L(tr,) + L(vaty,)

< (ty,) +l(y) =L(x) +1—2M + £(y).

Hence, M =0, \y = X and  £(y) > l(vaty,) > L(x) + L(y) — L(tr,) = L(y) —
Hence, there are only the following two possibilities.
Case (1): {L(vaty,) = {(y), which implies that vaty, =y = ut,.
Case (ii):  l(vatr,) = €(y) — 1.

Due to Lemma 6.9 as below, Case (i) is impossible. It remains to discuss Case
(ii). In this case,

0(z) + £(y) = £([t2t1]) = L([vata, vy 'v1ta])

(
<
< Uvatyr,) + £(vy turty)
=

y) = L+ £(ta) — Loy "or) = £(y) + £() — (5 00).

Hence, 6(1}2_11)1) = 0 and therefore v; = vs.

Since l(vaty,) = l(y) — 1 and vaty, < y, there exists v + md € R such that
Vatyn, = Oypmsut,. With the same discussion as in the proof of Lemma 6.6, we
have ¥ = u~!(y) € R" and voty, = uost,ymyv € W;. Hence, vy = va = uoy and
2 = uostriurmsv € Wy With the same argument as in the proof of Lemma 6.6
again, we can deduce that either m =0 or m = 1.
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If m = 0, then we have ¥ € R such that case a) holds; that is,
vity, = uosty;  Vata, = uosty; 2z = uoytaiu; L(uosy) = Ll(u) +1
If m = 1, then we have ¥ € RT such that vity, = uosly, voly, = uozl,i5v,
z = uostrypuryv and L(uosy) = l(u) + 1 — (3, 2p); that is, case b) holds. O

Remark 6.8. The condition “(u,c;) < —Ll(wo) for all j € I”7 does imply that
UV, WOy ENf v € Wop, whenever v € ' and X € Q.

Indeed, the statement can be checked directly for the case |I| = n = 1,2. For
any v € RT, write vV = Y. a;a. Note that {(wy) = |RY| > 9 and a; < 4 if
n = 3,4, and that £(wo) > 12 and a; < 6 if n > 5 (see e.g. page 66 of [15]). Hence,
uw+vY e QV is regular if n > 3. In particular, the statement holds.

Lemma 6.9. Case (i) in the proof of Lemma 6.7 can never occur.

Proof. Assume Case (i) holds, then we have A\; = X\, vaoty, = ut,, and
U(a) + y) = U[t2t1]) = L([utu orty])
< Llut,utorty)
< Uut,) + O(u" orty)
Uy) + £(tn) — 6~ or) = €y) + () + 1 — u"vy).
Therefore, we have either £(u~tv1) = 0 or £(u"tvy) = 1.
For the former case, we have v; = u, and therefore ¢(z) + £(y) = {([t1t2]) =
Uutryy,) = L(z) + L(y) + 1. This is a contradiction.
For the latter case, v1 = uo; for some j. If (A, a;) < (p,a;), then A\ + p —
(1, a5)af € QY. Note that the integer (i, oj) < —f(wo). Therefore
0(z) + U(y) = (([t2t1]) = L([ut,u uojty])
ut,ta]b\
=/ U’U —(p,05) }/Jrk)

<4
(
(uo; ) £ty <u,aj)ajv+>\)
(
(

IN

uoy) + (p — (p, ay)or + X, —2p)
uo;) + L(tasp) + 2{p, a;)

< Ll(wo) + l(z) + 1+ L(y) + L(u) — 20(wo) — 2 < £(z) + L(y).
If (N, o) > (p, o)), then A+ — (A, a)af € QV. Therefore,

() +£y) = £([tata]) =f([u0jtwju_1utu])

4
4
4

< U(uojtroty)

= l(uty_ (naj)a v+u)
(u) + Lta—(xa5)a) +1)
(u)

(u)

IN

W)+ A= O ag)a + 1, -29)
L) +2(N, o)
< l(wo) +(z) + 1+ L(y) + £(u) — 20(wo) — 2 < £(x) + £(y).

Both cases deduce contradictions. Hence, Case (i) is impossible. g

l
4
4
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Proof of Proposition 4.15. Note that 6,6, = ZZGW} Ztht? Ca [t1]Cy. [t2] Dz, [t1£2) O 2

where the only nonzero terms are those satisfying x = [t1],y = [t2], 2 < [t1t2] and
U(z) > (x) + {(y). Therefore, our result follows from Lemma 6.6, Lemma 6.7 and
Lemma 4.9 immediately. O

Proof of Proposition 4.16. ds, ., = w; — u(w;) holds by expanding the right side
(with respect to a reduced expression of u) and comparing both sides. It follows
from the definition, Lemma 6.1 and Lemma 4.7 that dy, . = [[ ,ea+r v and

w=l(v)e—RT
m

m
duty iy = wsowe 11 w(Hy) = (IT e 7)- T1 w(H;). Note that wo

Jj=r+1 wow—Ll(y)e—RT j=r+1
is an involution that maps —R* to RT, that {y € RT | w(y) € R'} is w-invariant
and that [T;_, H; = [[3c+ 8. Hence,

m+p
Wyt 1) duty it = w( [ 7)( I1 7). [T wiH)
~YERT ~eRrt j=r+1
w(y)e—RT w=l(y)ert
m-+p
=w( JT 2w IT 2 T w)
veRT veRt+ j=r+1
w(y)e—Rt w(y)eRrt
m~+p
=w( [T »- [ w#))
yeERt j=r+1
r m—+p m+p
=w([[H) [[ wE)=]] wH)).
j=1 j=r+1 Jj=1

Let ut, = [O—Bil "'Uﬁik]reda Ubrpp = [O—Bil - 0p;_ Jred (K < s) and denote v; =
08, "'UBij,l(ﬁij)- Note that uoyt, 4 v, uoytryuryv € W,y whenever v € I's,
by Remark 6.8. Therefore for v € I's, we have {(uo tripyyv) = Clutryy) —
1 and l(uoyt,yyv) = L(ut,) — 1. Note that u(y +6) = u(y) + 4 € R, and

UOY A+ ptryY = Oy(y+5)Utr+y. Hence, there is a unique 1 < j < s such that
U tar v = (08, 0/5\] - 0p; Jred and v; = u(y + J) by Lemma 6.1. As a
consequence, duath“Mv,utHu = %HZZI Ya = mdutx+wutx+u- Hence, (2)

holds. Similarly, (1) also holds.

With the same argument as above, there is a unique 1 < j < k such that
v = u(y +6) and uoy b, = 0p, U/,éz -+-0og, . Denote (a1, -+, a5-1) =
(i1, ,ij,-- ,ix) and denote %, = OBay " 0Ba, , (Ba,). Immediately, we have

k=1~ \—1 k=1 ~ e
Cutyuot, v = — (Vi [lp=1 W)™ and duo,t,, v uoyt,, v = [[)=; 7 by definition.

Therefore, (3) also holds by the following observation
d

m
WO A4y VU4V dua,ytwr,yv ot v Hj:l uo"ﬁu-{-’W (H]) i

6.3. Equivariant quantum cohomology of X = G/B. The Lie group G pos-
sesses a so-called Bruhat decomposition G' = | |,y BB, labelled by elements in
the Weyl group W. It induces a decomposition of X := G/B into Schubert cells:
X = ,ew BwB/B, in which BiB/B = C**). The closures X,, := BwB/B are
called Schubert varieties in X. Let o, denote the image of the fundamental class
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[X] under the canonical map H,(Xy,Z) — H.(X,Z). Then o € Hop) (X, Z)
and these Schubert homology classes o,’s form an additive basis of H,.(X,Z).
The cohomology group H*(X,Z) also has an additive basis of Schubert coho-
mology classes 0"’s such that (oy,0") = 0y, for any w,v € W. If we write
ghl = f[ X] o Uo", then the matrix (g“’”) is invertible with its inverse denoted as

u,v) L
(9u0) = (9"7)
For each i € I, we denote s; = 0,, and introduce a formal variable ¢;. Identify

Hy(X,Z) = @,;e;Zos, with Q¥ via f = Y. dios, — Ag = >, dia. Denote
Arg = Qi: Hie[ q;il

Let My (X, 3) be the Kontsevich’s moduli space of stable maps of degree 5 of
m-pointed genus 0 curves into X (see [11]). Let ev; denote the i-th canonical eval-
uation map ev; : Mo, (X, 8) — X given by ev;([f : C — X;p1, - ,pm]) = f(ps)-
The genus zero Gromov-Witten invariant for v1,--- , v, € H*(X) = H*(X,Q) is
defined as

Lo s (11~ +7m) =/ evi(11) U+~ U evy (m).

Mo,m(Xaﬁ)

The (small) quantum product for a,b € H*(X) is a deformation of the cup
product defined as follows.

axb= Z Ios.p(a,b,0")guno’q".
u,veEW;8€Ho(X,Z)
The Q[q]-module H*(X)[q] := H*(X)®Q|[q] equipped with * is called the small
quantum cohomology ring of X and denoted as QH*(X). So the same Schubert
classes 0% = ¢* ® 1 form a basis for QH*(X) over Q[q] and we write

u v o w,A w
o' %o’ = E Nvano®.
weW,NeQV

The coefficients ijf;j\’s are called the quantum Schubert structure constants. In
fact, >0, cy Gur w0t = 0“0 (see e.g. [12]). Compared with the original definition
of quantum product, the quantum Schubert structure constant ijf;} is exactly
equal to the (3-pointed genus zero) Gromov-Witten invariant Iy s x (%, o", c¥°").
When A = 0, they give the classical Schubert structure constants for H*(X). The
T-action on X induces an action on the moduli space MOQ,(X ,0) given by: t -
(f: C = X;p1,p2,p3) = (ft : C — X;p1,p2,ps) where fi(x) := t- f(x). The
evaluation maps ev;’s are T-equivariant. We use the same notation ¢" to denote
the equivariant Schubert class in H.(X). The equivariant Gromov-Witten invariant
is defined as I 5 5(0*, 0, 0%) = 7l (ev{ (0*) - ev] (0¥) - evi (o)), where 7] is the
equivariant Gysin push forward. As a consequence, the equivariant (small) quantum
product xp is defined (see e.g. [33]). The equivariant quantum cohomology ring
QH(X) = (H*(X)[a, q],*r) is commutative and associative, which has an S[q]-

basis of Schubert classes with S[q] = Q[a, -+ ,an,q1, - , ¢n]. Furthermore,
o *p o’ = Z ijf;j\qAaw, where ]\7;“7;,)‘ = ijff(a) €S =Qay, -, ay].
weW,AeQV

6.4. Equivariant cohomology of QK. The affine Kac-Moody group G possesses
a Bruhat decomposition | |,y fBacB, where the canonical identification Wy =2
al

N(T¢)/Tt is used. Here T = Homg(h%, C*) denotes the standard maximal torus
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of G, in which by is the integral form of § = by (see e.g. chapter 6 of [24]). The
Bruhat decomposition of G induces a decomposition of G/Py into Schubert cells:
G/Py = |, ew, BxPy /Py. Schubert varieties are the closures of BxPy /Py’s in

G/Py. Let &Y denote the image of the fundamental class [BxPy /Py| under the
canonical map H,(BzPy /Py) — H.(G/Py). Then H.(G/Py,Z) has an additive
basis of Schubert homology classes {SY | z € WX}. We denote &, = &Y wherever
there is no confusion. Similarly, the cohomology group H*(G/Py,Z) has an additive
basis of Schubert cohomology classes {&% | z € WX}, where (&,,8Y) = §, , with
respect to the natural pairing.

The standard maximal torus 7¢ of G has complex dimension n+ 2 with maximal
compact sub-torus T = Homz(ﬁ%,Sl). With respect to the natural action of Te
on G/B, we consider the equivariant cohomology H, pd (G/B), which is an S-module

with S = S[h3] = HZ (pt). Note that the 1-dimensional sub-torus C*, which comes
from the central extension, acts on G/B trivially. As a consequence, the equi-
variant Schubert structure constants are polynomials in Q[d, a1, -+, ] C S only.
Since we are concerned with the non-trivial part of the Te-action only, we denote
S = Q[d, a1, ,n] = Qlag, 1, ,ay] by abusing of notations. HZ(G/B) is
an S-module spanned by the basis of equivariant Schubert classes (see e.g. [24]
for concrete definitions), which we also denote as {&* | € Wy} simply. Via
the embedding 7* : H%(G/Py) < HZ(G/B) induced by the natural projection
T : G/B — G/Py, the equivariant cohomology H7(G/Py) is also an S-module
spanned by the basis of equivariant Schubert classes {&% | x € WX}. As a con-
sequence, equivariant Schubert structure constants for G/Py are covered by equi-
variant Schubert structure constants for G/B.

Remark 6.10. For &°,6% € H2(G/B), 676" = Zzewaf ps 6% The equivariant

Schubert structure constant p; , is a polynomial in S. In terms of combination of

rational functions, one has p;, = > cw ¢ Qo vty oCzn (see e.g. chapter 11 of [24]).
’ a

Let LanK ={f € G| f(SY) ¢ K} and QunK = {f € LanK | f(151) = 1 }. Note
that each f € G can be written as f(t) = fx(t) - fp(t) for some unique fx € Qun K
and fp € Py. Therefore we can realize G/ Py as Qan K, which is homotopy-equivalent
to QK via the (L., K-equivariant) homeomorphism G/Py — Q., K (see [36] and
references therein for more details). Since we are concerned with properties at the
level of (co)homology only, we do not distinguish between Q,,K and QK. The
Bruhat decomposition of G/Py readily gives a Bruhat decomposition of QK. As a
consequence and by abusing notations, we know that H.(QK,Z) (resp. H*(2K,Z))
has an additive Z-basis of Schubert (co)homology classes {&, (resp. &%) |z € W}

The (non-trivial part of the) T-action on G/Py corresponds to the natural S' x T
action on QK , which consists of the rotation action of S' on QK and the action
of T on QK by pointwise conjugation. By considering the T-action only, we ob-
tain the evaluation maps ev : H7(G/Po) — H7(G/Po) and ev : S = HZ(pt) —
H:.(pt) = S, where the T-equivariant cohomology H7.(G/Pp) is an S-module with
S =Q|aa, -+, a,]. The image of the null root § = ap+6 in S is 0. More precisely,
we have HZ(G/Po) = Spang{ér | € W} and H7(G/Po) = Spang{&” | x €
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Wit Let f = f(awo, a1, o) € S, then we have ev(f) = f(=0, 01, ,a,) € S

and ev(f&*) = ev(f)&.
Remark 6.11. 6*GY = ZzeW;fﬁlZnyGZ' The T-equivariant Schubert structure

constant p; , is a polynomial in S. It follows from Remark 6.10 and Lemma 4.1/
that p; ,, = Zvew} Ay [0]dy,[0)Cz,[v] @S combination of rational functions.

al
Remark 6.12. The T-equivariant Schubert structure constant p;; , for G/B can
also be expressed in terms of cy,p and dy. The polynomial p; , is given by p.’, =
Zmew Ay, vy Ay, Cowy aS combination of rational functions (see e.g. [24]).

Remark 6.13. Because of the natural S-module isomorphism H7(QK x QK) =
Hi(QK)®g Hi(QK), the Pontryagin product QK x QK — QK , which is associa-
tive and T-equivariant, induces a coassociative coproduct H3(UK) — H3(QK) ®
Hi(QK). In particular, this gives an alternative definition of the T-equivariant ho-
mology of G/ Py, which doesn’t use Borel-Moore homology. Indeed, define HX (G/Po)
to be the submodule of Homg(H3(G/Po), S) spanned by those S, € Homg(H7(G/Po), S)
which for any x,y € W_; satisfy (S,,&Y) = d,,, with respect to the natural pair-
ing. Then the product of HI(G/Py), induced from the coproduct of H3(G/Po) =
H*(QK), makes HT (G/Py) an S-algebra. Note that the elements &, coincide with
the integration operators L, defined in [1] Prop. 2.5.1, so Arabia’s localization for-
mula can be applied. Thus the whole proof of the formula for structure coefficients
by, s still goes through.
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