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Abstract. We compute the effective good divisibility of a rational homoge-

neous variety, extending an earlier result for complex Grassmannians by Naldi
and Occhetta. Non-existence of nonconstant morphisms to rational homoge-

neous varieties of classical Lie type are obtained as applications.

1. Introduction

The notion of effective good divisibility e.d.(X) of a complex projective manifold
X was introduced by Muñoz, Occhetta and Solá Conde [16], refining the notion
of good divisibility introduced by Pan [19]. It is the upper bound of the total
degree i + j of two nonzero effective classes xi ∈ H2i(X) and xj ∈ H2j(X) with
xi∪xj 6= 0. It has nice applications on the nonexistence of nonconstant morphisms.
As shown by Naldi and Occhetta [18], the effective good divisibility of a complex
Grassmannian Gr(m,n + 1) is equal to n + 1. It is then quite natural to ask for
this quantity for a general rational homogeneous variety G/P , the quotient of a
complex simple and simply-connected Lie group G by its parabolic subgroup P .

The question on e.d.(G/P ) is actually closely related with a problem of character-
izing the degree of quantum variables in quantum product, in earlier and extensive
studies of quantum cohomology. The quantum cohomology ring QH∗(G/P ) =
(H∗(G/P ) ⊗ Z[q], ?) is a deformation of the classical cohomology H∗(G/P ), by
incorporating genus zero, three-pointed Gromov-Witten invariants. It has a canon-
ical basis of Schubert classes [Xu], and the evaluation [Xu]? [Xv]|q=0 coincides with
[Xu]∪ [Xv]. As shown in [12], the quantum product [Xu]? [Xv] never vanishes, lead-
ing to the characterization of the degree of q and particularly the minimal degree
dmin in such individual product asked two decades ago. The characterization was
provided for complex Grassmannians therein, for (co)minuscule Grassmannians in
[8, 6] and for Grassmannians of types B and C in [23]. There has also been extended
study in the context of quantum K-theory [4, 3]. With this terminology, e.d.(G/P )
is equivalent to the upper bound of the total degree of all Schubert classes [Xu]
and [Xv] that satisfy dmin = 0 in [Xu] ? [Xv]. As we will see, the viewpoint from
quantum cohomology is particularly useful in the study of e.d.(G/P ) in the case of
minuscule Grassmannians of classical Lie type.

Let D denote the Dynkin diagram of G with the set ∆ of nodes, for which we take
the same numbering as on page 58 of [15]. Parabolic subgroups P of G that contain
a fixed Borel subgroup B are in one-to-one correspondence with the subsets ∆P

of ∆. Let Pm be the maximal parabolic subgroup that corresponds to the subset

While this manuscript was almost finished, Muñoz, Occhetta and Solá Conde posted a preprint
[17] independently proving Theorems 1.1 and 1.2 for rational homogeneous varieties of classical
type. Our proof is completely different from theirs, and our main results hold for all Lie types.
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∆ \ {αm}. By D(m) we mean the Grassmannian G/Pm with G being of type D.
Then An(m) is the complex Grassmannian Gr(m,n + 1), and Dm can be realized
as isotropic Grassmannians for other classical types. As a first main result, we
obtain the following, where the known cases An(m) and G2(m) are included for
completeness.

Theorem 1.1. The effective good divisibility e.d.(D(m)) is given in Table 1.

Table 1. Effective good divisibility e.d. of D(m)

D Dn+1(m) F4

m
An(m) Bn(m) Cn(m)

1, n, n+ 1 2 ≤ m < n 1, 4 2, 3
G2(m)

e.d. n 2n−1 2n−1 2n− 1 2n 12 14 5

D E6 E7 E8

m 1, 6 2, 3, 5 4 1 2,6 3 4,5 7 1 2, 3, 5 4 6 7 8

e.d. 12 14 15 22 23 24 25 19 46 50 51 48 45 40

The above theorem will be proved for classical types in section 3.4 and for excep-
tional types in section 4. As from Table 1, the effective good divisibility of Grass-
mannians G/Pm may equal each other for distinct m. For instance, e.d.(E7(2)) =
e.d.(E7(6)) = 23; e.d.(D(m)) is independent of m, whenever D is of type A, B, C
or G2.

The nonvanishing of [Xu] ∪ [Xv] in H∗(G/P ) is equivalent to the nonempty

intersection of Schubert variety Xu and another Schubert variety Xv] opposite
to Xv. This is further equivalent to the property u ≤ v] with respect to the
Bruhat order. Then we can reduce it to the Bruhat order among Grassmannian
permutations. Such reduction is well known for type Lie A (see for instance [10,
exercise 8 on page 175]). The reduction for general Lie type should have also been
known to the experts, while we treat it as a special case of [4, Theorem 5], for
not being aware of a precise reference elsewhere. As a consequence, we obtain the
following.

Theorem 1.2. The effective good divisibility of G/P of any type D is given by

e.d.(G/P ) = min{e.d.(D(m)) | m ∈ ∆ \∆P }.

In particular for any complete flag manifold G/B, the next table of e.d.(G/B)
follows immediately from the above theorem and Table 1. Therein we provide the
Coxeter number h(D), and can see that e.d.(G/B) = h(D) − 1 if and only if G is
of either classical Lie type or type G.

Table 2. Effective good divisibility of G/B of type D

D An Bn Cn Dn+1 E6 E7 E8 F4 G2

e.d.(G/B) n 2n− 1 2n− 1 2n− 1 12 19 40 12 5

h(D) n+ 1 2n 2n 2n 12 18 30 12 6
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Remark 1.3. In [17], Muñoz, Occhetta and Solá Conde have also obtained e.d(G/P )
when G is of classical type. They started with a complete flag manifold G/B. They
made use of a beautiful induction on the rank of G and computer computations
for some rational homogeneous varieties with low rank automorphism groups, with
key ingredients including Stumbo’s description [24] of certain elements in the Weyl
group. Then e.d.(G/P ) was obtained, due to a minor gap between e.d.(G/B) and
an obvious upper bound of e.d.(D(m)). They also checked e.d.(G/B) for types G2,
F4 and E6, while the cases for types E7 and E8 were computationally out of reach.

We are taking a completely different approach by starting with Grassmannians
G/Pm of classical type, which parameterize isotropic vector subspaces of CN . For
such Grassmannians, the Schubert varieties Xu are not only labeled by elements
u in a subset of the Weyl group of G, but also equivalently by other combinatorial
objects, including k-strict partitions and index sets [5] (called also Schubert sym-
bols in [22]). The Bruhat order among index sets becomes much easier to study,
with the price of complicated dimension counting. We achieve Theorem 1.1 by
carefully analyzing the cardinality of relevant combinatorial sets for classical type,
and by directly comparing the Bruhat order among Grassmannian permutations for
exceptional type with the help of computer computations. Then we carry out all
e.d.(G/P ) in Theorem 1.2 using a reduction of Bruhat orders as mentioned above.

In any category, it is important to study the morphisms between objects. One
question of interest is to find sufficient conditions for a morphism to be constant.
The answer is well-known for morphisms Pr → Pn = Gr(1, n + 1) of (smooth)
projective varieites, which must be constant whenever r > n. The same statement
with Pn replaced by general complex Grassmannian Gr(m,n+ 1) was obtained by
Tango [26, Corollary 3.2], by studying the pullback of Chern classes of tautological
vector bundles. With the same idea, Naldi and Occhetta [18] extended the result
to morphism M → Gr(m,n+ 1) from smooth complex projective variety M , with
the concept of effective good divisibility e.d.(M).

Theorem 1.4. Let G/P be of classical Lie type, and M be a connected complex
projective manifold. If e.d.(M) > e.d.(G/P ), then any morphism M → G/P is
constant.

In [17], Muñoz, Occhetta and Solá Conde provided a slightly more general applica-
tion by assuming M to be a complex projective variety (together with a straight-
forward extension of e.d.(M) in terms of nonvaninshing of products in the Chow
ring of M). On the one hand, we reduce Theorem 1.4 to the case when G/P
is a Grassmannian as in Proposition 5.2. Our proof is mainly a straightforward
generalization of that for M → Gr(m,n + 1) in [26, 16, 18]. It can be directly
extended to the same setting for M in [17] (see Remark 5.3), and the two ap-
proaches are different. On the other hand, it seems difficult to find nice vector
bundles over an even-dimensional quadric with expected properties. The proof for
the exception is due to [17, Corollary 5.3]. As a corollary of Theorems 1.1, 1.2 and
1.4, the application [17, Corollary 1.4] can be extended to G of arbitrary type as
follows. Therein the hypothesis parabolic Q in type E7 (resp. E8) is equivalent to
∅ 6= ∆ \ ∆Q 6= {α7} (resp. ∅ 6= ∆ \ ∆Q 6⊆ {α7, α8}). We expect the additional
assumption in types E7 and E8 to be removable with a better understanding of the
relevant rational homogeneous varieties.
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Corollary 1.5. Let P, P̄ ,Q be proper parabolic subgroups of G with Q containing
P̄ . Then there does not exist any non-constant morphism G/P → Q/P̄ , provided
Q 6= P7 if G is of type E7, or Q 6⊇ P7 ∩ P8 if G is of type E8.

The Dynkin diagram of ∆Q consists of r connected components of typeD(1), · · · ,D(r)

respectively. Then Q/P̄ is isomorphic to a product X1 × · · · × Xr with Xi being
a rational homogeneous variety (possibly a point) of type D(i). The hypothesis in
the above corollary is equivalent to that all D(i)’s are of classical type.

The paper is organized as follows. In section 2, we review basic facts on rational
homogeneous varieties and prove Theorem 1.2. In section 3, we prove Theorem
1.1 for Grassmannians of classical type. In section 4, we provide the computation-
al results for Grassmannians of exceptional type. Finally in section 5, we prove
Theorem 1.4 as an application.

Acknowledgements. The authors thank Pierre-Emmanuel Chaput, Haibao Du-
an, Jianxun Hu, Xiaowen Hu, Hua-Zhong Ke, Naichung Conan Leung, Leonardo
Constantin Mihalcea, Lei Song and Heng Xie for helpful discussions. The authors
are extremely grateful to the anomynous referee for the very careful reading and
the quite valuable comments. C. Li is supported by NSFC Grants 12271529 and
11831017, and Guangdong Introducing Innovative and Enterpreneurial Teams No.
2017ZT07X355.

2. Reduction of effective good divisibility of G/P

The notion of effective good divisibility was introduced in [16], refining the notion
of good divisibility [19]. In this section, we reduce the effective good divisibility
of a rational homogeneous variety to that of Grassmannians. Namely we prove
Theorem 1.2 first, which is completely independent of Theorem 1.1.

2.1. Rational homogeneous varieties. We review some well-known facts on ra-
tional homogeneous varieties, and refer to [14, 7] for more details.

Let G be a connected simple complex Lie group, B a Borel subgroup of G and
B− the Borel subgroup opposite to B. Then T = B ∩ B− is a maximal torus.
Let R denote the root system of G determined by (G,T ), with a base ∆ of simple
roots and the subset R+ ⊃ ∆ of positive roots. Then parabolic subgroups P of G
that contain B are in one-to-one correspondence with the subsets ∆P ⊂ ∆. The
quotient G/P is a rational homogenous variety, called also a flag variety. We take
the same numbering of the simple roots αi as in the Dynkin diagram D on [15, page
58]. In particular, G/Pm is called a Grassmannian, when the parabolic subgroup
Pm corresponds to the subset ∆Pm = ∆ \ {αm}.

The Weyl group W = NG(T )/T of G is generated by simple reflections {sα |
α ∈ ∆}, where NG(T ) is the normalizer of T in G. Let WP be the Weyl subgroup
generated by the simple reflections {sα | α ∈ ∆P }. There is a unique element
of minimal length in each coset in W/WP with respect to the standard length
function ` : W → Z≥0. Such minimal length representatives form a subsetWP ⊂W
bijective to W/WP . Then any element w ∈W has a unique factorization w = w1w2

with w1 ∈ WP and w2 ∈ WP , implying `(w) = `(w1) + `(w2). Let w0 (resp. wP )
denote the (unique) longest element in W (resp. WP ).

There are Bruhat decompositions of the flag variety G/P into affine spaces:

G/P =
⊔
w∈WP BwP/P =

⊔
u∈WP B−uP/P . The Zariski closures Xw = BwP/P
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(resp. Xu = B−uP/P ) are (opposite) Schubert varieties of dimension `(w) (resp.
codimension `(u)). It follows that

H∗(G/P ) = H∗(G/P,Z) =
⊕
u∈WP

Z[Xu]

has a Z-basis of Schubert cohomology classes [Xu] ∈ H2`(u)(G/P,Z) (the Poincaré
dual of the homology class of Xu). There is a partial order ≤ on WP , called the
Bruhat order, with u ≤ w defined by any one of the following equivalent properties

i) Xu ⊆ Xw;
ii) Xu ⊇ Xw;

iii) a reduced decomposition of u can be obtained from some substring of some
reduced decomposition of w.

The (transversal) intersection Xw ∩ Xu is an irreducible and reduced closed sub-
variety of dimension `(w) − `(u) if u ≤ w, or an empty set otherwise. It follows
that

(2.1) [Xw] ∪ [Xu] = [Xw ∩Xu],

∫
X

[Xw] ∪ [Xu] = δw,u.

For any v ∈ WP , (opposite) Schubert varieties are related by Xv = w0X
w with

w = w0vwP ∈WP . This implies the following well-known fact.

Proposition 2.1. For any u, v ∈WP , [Xu] ∪ [Xv] 6= 0 if and only if u ≤ w0vwP .

Quantum cohomology. Here we provide a brief description of the small quantum
cohomology ring QH∗(G/P ) for self-containedness, and refer to [11, 12] for more
details.

For any variety Y , we denote by [Y ]h the homology class of Y . LetM0,3(G/P,d)
denote the Kontsevich moduli space of all 3-pointed stable maps (f : C → G/P, p1, p2, p3)
of arithmetic genus zero and degree f∗([C]h) = d ∈ H2(G/P,Z), which is a projec-
tive variety of dimension

dimM0,3(G/P,d) = dimG/P + 〈c1(G/P ),d〉.
This space is equipped with evaluation maps evi : M0,3(G/P,d) → G/P that
send a stable map to the image f(pi) of the i-th marked point. For ∆ \ ∆P =
{αj1 , · · · , αjr}, we simply denote qi = qαji . The quantum product in the quantum

cohomology ring QH∗(G/P ) = (H∗(G/P )⊗ Z[q1, · · · , qr], ?) is defined by

[Xu] ? [Xv] =
∑

d∈H2(G/P,Z)

∑
w∈WP

Nw,d
u,v [Xw]qd

where qd =
∏r
i=1 q

di
i for d =

∑r
i=1 di[X

sαji ]h ∈ H2(G/P,Z), and

Nw,d
u,v =

∫
M0,3(X,d)

ev∗1[Xu] ∪ ev∗2[Xv] ∪ ev∗3[Xw]

is a genus zero, 3-pointed Gromov-Witten invariant, counting the number of holo-
morphic maps in {φ : P1 → G/P | φ∗([P1]h) = d;φ(0) ∈ Xu, φ(1) ∈ g1Xv, φ(∞) ∈
g2X

w} for generic g1, g2 ∈ G. In particular, Nw,d
u,v = 0 unless d is effective, namely

di ≥ 0 for all i. If d = 0, then φ is a constant map, implying

(2.2) [Xu] ? [Xv]|q=0 =
∑

w∈WP

Nw,0
u,v [Xw] = [Xu] ∪ [Xv].

Moreover, the above sum is indeed finite, due to the positivity of c1(G/P ).
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Let 〈·, ·〉 denote the natural pairing between cohomology classes and homology
classes. The following proposition will be sufficient for our later use.

Proposition 2.2. The quantum cohomology QH∗(G/P ) is a Z-graded algebra with
respect to the gradings deg[Xu] = `(u) and deg qα = 〈c1(G/P ), [Xsα ]h〉, where
u ∈WP and α ∈ ∆ \∆P . Furthermore for any v ∈WP , [Xu] ? [Xv] 6= 0.

The nonvanishing of the quantum product of Schubert classes is due to Fulton
and Woodward [12, Theorem 9.1]. The Z-graded algebra structure of QH∗(G/P )
follows directly from the definition of quantum cohomology.

2.2. Proof Theorem 1.2. Let us start with the notion of effective good divisibility
introduced in [16].

Definition 2.3. A complex projective manifold M is said to have effective good
divisibility up to degree s, denoted as e.d.(M) = s, if s is the maximum integer such
that xi ∪xj 6= 0 for any effective classes xi ∈ H2i(M) \ {0}, xj ∈ H2j(M) \ {0} and
any i, j satisfying i+ j ≤ s.

Recall ∆ \ ∆P = {αj1 , · · · , αjr}. Denote by πi : G/P → G/Pji the natural
projection. For any u ∈WP , we denote by ui the minimal length representative of
the coset uWPji

in WP /WPji
. Denote by Zui (resp. Zui) the (opposite) Schubert

varieties in G/Pji of dimension (resp. codimension) `(ui). Denote by dαji (u,w)

the smallest degree of a T -stable curve in G/Pji connecting the Schubert varieties
Zui and Zwi . The next proposition is Theorem 5 of [4].

Proposition 2.4. Let u,w ∈ WP . There exists a stable curve of degree d =∑r
i=1 di[X

sji ]h connecting Xu and Xw if and only if di ≥ dαi(u,w) for all 1 ≤ i ≤ r.

A T -stable curves of degree 0 is a T -fixed point of the natural action of T . There
exists a stable curve of degree 0 connecting Xu and Xw if and only if Xu∩Xw 6= ∅,
and hence it is equivalent to u ≤ w. Similarly,

0 ≥ dαji (u, v) ≥ 0⇐⇒ dαji (u, v) = 0⇐⇒ Zui ∩ Zwi 6= ∅⇐⇒ ui ≤ wi.
In other words, applying Proposition 2.4 to the special case d = 0, we obtain

Proposition 2.5. For any u,w ∈WP , u ≤ w if and only if ui ≤ wi for all i.

The above proposition is the key ingredient in our proof of Theorem 1.2, which
reduces the Bruhat order on WP to that on WPji . This property has been well
known for a long time for G = SL(n + 1,C) (see for instance exercise 8 on page
175 of [10]). We explain it for general G from [4, Theorem 5], for not being aware
of a precise reference elsewhere.

Proof of Theorem 1.2. The natural projection πi induces an injective homomor-
phism π∗i : H∗(G/Pji) → H∗(G/P ), which sends a Schubert class [Zw] to the
Schubert class [Xw] of the same subscript. It follows that e.d.(G/P ) ≤ e.d.(G/Pji)
for all i. Hence, e.d.(G/P ) ≤ min{e.d.(G/Pji) | 1 ≤ i ≤ r}.

Say e.d.(G/Pjm) is the minimum among e.d.(G/Pji)’s, 1 ≤ i ≤ r. Take any
u, v ∈ WP with `(u) + `(v) ≤ e.d.(G/Pjm). Then w := w0vwP ∈ WP and we have
the factorizations u = uiūi, w = wiw̄i, where ui, wi ∈WPji and ūi, w̄i ∈WPji

. For

any α ∈ ∆P , we have u(α) ∈ R+ due to u ∈WP . Since ∆P ⊆ ∆Pjm
, ūi(α) belongs

to the root subsystem RPjm . Then it follows from ui ∈ WPjm and ui(ūi(α)) =
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u(α) ∈ R+ that ūi(α) is again a positive root. Therefore ūi ∈WPji
∩WP . Similarly,

we have w̄i ∈ WPji
∩ WP . Moreover, `(ui) ≤ `(u), [Xv] = [Xw] ∈ H∗(G/P ),

[Zwi ] = [Zw0wiwPji
] ∈ H∗(G/Pji) and

`(w0wiwPji ) = `(w0)− `(wi)− `(wPji )
= `(w0)− `(w) + `(w̄i)− `(wPji )
= `(w0)− (`(w0)− `(v)− `(wP )) + `(w̄i)− `(wPji )
= `(v) + `(w̄iwP )− `(wPji )
≤ `(v).

Therefore `(ui)+`(w0wiwPji ) ≤ `(u)+`(v) ≤ e.d.(G/Pjm) ≤ e.d.(G/Pji), implying

[Zui ] ∪ [Zwi ] = [Zui ] ∪ [Zw0wiwPji
] 6= 0. Thus ui ≤ wi for all i. By Proposition

2.5, we have u ≤ w. Hence, [Xu] ∪ [Xv] = [Xu] ∪ [Xw] 6= 0. It follows that
e.d.(G/P ) ≥ e.d.(G/Pjm) = min{e.d.(G/Pji) | 1 ≤ i ≤ r}.

Hence, e.d.(G/P ) = min{e.d.(G/Pji) | 1 ≤ i ≤ r}. �

3. Effective good divisibility of Grassmannians of classical type

In this section, we study e.d.(G/Pm) for G of classical type. The key technical
propositions are Proposition 3.5 and Proposition 3.9, dealing with the case of Lie
types Bn and Dn+1 respectively. .

3.1. Isotropic Grassmannians. We refer to [5, 22] for more details on the facts
reviewed here. A Grassmannian G/Pm of type An, i.e. when G = SL(n+ 1,C), is
known as a complex Grassmannian Gr(m,n+ 1) = {Σ 6 Cn+1 | dim Σ = m}. This
interpretation can be generalized to other classical types.

Let V be anN -dimensional complex vector space equipped with a non-degenerate
skew-symmetric or symmetric bilinear form ω(·, ·), and denote

X = IGω(m,N) := {Σ 6 V : dimC Σ = m, ω(v,w) = 0 ∀v,w ∈ Σ}.
X is smooth projective variety if m ≤ N

2 , or an empty set otherwise. We usually
use a different notation of X in each specified type.

b) ω is symmetric and N = 2n+ 1. Then X = OG(m, 2n+ 1) is called an odd
orthogonal Grassmannian. Set k := n−m.

c) ω is skew-symmetric, implying N = 2n. Then X = SG(m, 2n) is called a
symplectic Grassmannian. Set k := n−m.

d) ω is symmetric and N = 2n + 2. Then X = OG(m, 2n + 2) is called an
even orthogonal Grassmannian. Set k := n+ 1−m.

When G is of types Bn, Cn or Dn+1, G/Pm can be realized as an isotropic Grass-
mannian IGω(m,N) as above, with an additional requirement m < n when G
is of type Dn+1. The isotropic Grassmannian OG(n + 1, 2n + 2) consists of two
connected components, which are isomorphic to G/Pn and G/Pn+1 of type Dn+1

respectively. Moreover, they are all isomorphic to OG(n, 2n+1). Therefore we will
further assume m < n in case d) above.

A partition is a weakly decreasing sequence of non-negative integers λ = (λ1 ≥
· · · ≥ λm ≥ 0). The weight of λ is the sum |λ| =

∑
i λi. For G = SL(n + 1,C),

the Weyl group W is the group Sn+1 of permutations of (n + 1) objects. The
subset WPm is bijective to the set Pm,n+1 of partitions inside an m× (n+ 1−m)
rectangle, by w 7→ (w(m) −m, · · · , w(1) − 1). The length `(u) equals the weight
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of the corresponding partition, and the Bruhat order on WPm coincides with the
standard partial order on Pm,n+1 as real vectors. In [5], Buch, Kresch and Tamvakis
introduced the following notion of k-strict partitions for G/Pm of other classical
types, making the codimension of Schubert varieties apparent.

Definition 3.1. A partition λ is called k-strict if no part greater than k is repeated,
namely λj > k ⇒ λj > λj+1.

Notice that the cases b), c) and d) can be distinguished by the triple (N,n, k). There
is a bijection u 7→ λ(u) between WPm and PN (k, n), the set of k-strict partitions
contained in an m × (n + k) rectangle in cases Bn,Cn (for Dn one should use a
slight modification of k-strict partitions in order to describe Schubert varieties; we
will recall this modification in section 3.3). Schubert varieties Xu = Xλ(u) have
apparent codimension |λ(u)|, yet the Bruhat order u ≤ w becomes complicated in
terms of k-strict partitions in general.

It is a central problem to find a manifestly positive formula of all Schubert
structure constants Nw,0

u,v for H∗(G/P ). This remains unknown even for G/Pm in
cases b), c), d) with 2 ≤ m < n. The case m = n has been much better understood
(we refer to [27] and references therein). There is an exact sequence of vector
bundles over X,

(3.1) 0 −→ S −→ VX −→ Q −→ 0

with S the tautological subbundle of the trivial bundle VX = X×V , whose fiber at
a point Σ ∈ X is just the vector space Σ. The multiplication of ci(S∨) (resp. cj(Q))
by general Schubert classes are known as Pieri rules and are provided in [20, 21]
(resp. [5]). The Chern classes of Q and the dual vector bundle S∨ are Schubert
classes labeled by special k-strict partitions (up to a scalar of 2). In particular, S∨
is of rank m, Q is of rank N −m, and for X = OG(m,N) (with m < n) we have

cm(S∨) = [X(1,··· ,1)], cn+k(Q) = 2[X(n+k,0,··· ,0)], cn+k+1(Q) = 0,

for more detailed explanation of which we refer to [5, 25]. It follows that

(3.2) 0 = cn+k(Q) ∪ cm(S∨) = 2[X(n+k,0,··· ,0)] ∪ [X(1,··· ,1)] ∈ H2(n+k+m)(X).

We remark that when X is a complex or symplectic Grassmannian, the scalar 2
does not occur, and we have cm(S∨) ∪ cn+1−m(Q) = 0 for Gr(m,n+ 1).

The Borel subgroup B of G stabilize an isotropic complete flag F•, which specifies
a basis {e1, · · · , eN} of V that satisfies (ei, ej) = δi+j,N+1 for all i ≤ j; moreover,
Fj = 〈e1, . . . , ej〉, the span of the first j basis vectors. Schubert varieties can also
be parameterized by index sets P (called also Schubert symbol in [22]), which are
subsequences P = {p1 < p2 < · · · < pm} in [N ] that satisfy pi + pj 6= N + 1 for all
i 6= j. There is a bijection between PN (k, n) and the set S(X) of index sets. The set

S(X) is equipped with a standard partial order, say P ≤ P̂ if and only if pi ≤ p̂i for
all 1 ≤ i ≤ m. The parameterizations by index sets provide geometric descriptions
of Schubert varieties and make the Bruhar order apparent in terms of the standard
order ≤, while it pays the price at dimension counting of Schubert varieties. In
next two subsections, we will restrict to X = OG(m,N), with 1 ≤ m < n in case
b) and 2 ≤ m < n in case d), and will describe the correspondence λ 7→ P(λ)
precisely. We will deal with the remaining cases in section 3.4. We will interchange
the parameterizations u, λ = λ(u) and P = P(λ).



EFFECTIVE GOOD DIVISIBILITY OF RATIONAL HOMOGENEOUS VARIETIES 9

3.2. Odd orthogonal Grassmannians. Recall k = n−m for X = OG(m, 2n+1).
The bijection Φ is given by

Φ :P2n+1(k, n) −→ S(X) = {P ⊂ [1, 2n+ 1] | pi + pj 6= 2n+ 2, ∀i 6= j; n+ 1 6∈ P}
λ 7→ P(λ) = (p1(λ), · · · , pm(λ)) with

(3.3) pj(λ) = n+ k + 1− λj + #{i < j : λi + λj ≤ 2k + j − i}+

{
1, if λj ≤ k,
0, if λj > k.

.

The Schubert variety Xλ = XP(λ) (relative to the isotropic flag F•) is given by

Xλ = Xλ(F•) = {Σ ∈ X | dim(Σ ∩ Fpj(λ)) ≥ j, ∀1 ≤ j ≤ m} =: XP(λ),

where the rank condition dim(Σ∩Fpj(λ)) ≥ j becomes trivial whenever λj = 0. The
next property follows immediately from the above description of Schubert varieties.

Proposition 3.2. For any P,Q ∈ S(X), XP ⊆ XQ if and only if P ≤ Q.

In particular we define P � Q if and only if XP ⊆ XQ as in [22]. Then

(3.4) µ � λ⇐⇒ P(λ) � P(µ) =: Q⇐⇒ P ≤ Q.

The dual λ∨ of λ = λ(u) is the k-strict partition in P2n+1(k, n) that corresponds
to w0uwPm . By (2.1) and [Xu] = [Xw0uwPm

], λ∨ is the unique element satisfying∫
X

[Xµ] ∪ [Xλ∨ ] = δµ,λ,∀ µ ∈ P2n+1(k, n)

The dual index set P∨ = P(λ)∨ := P(λ∨) has a simple description by

(3.5) p∨j = 2n+ 2− pm+1−j , ∀1 ≤ j ≤ m.

We introduce the following definition for both OG(m, 2n+1) and OG(m, 2n+2).

Definition 3.3. Let λ = (λ1, λ2, · · · , λm) be a k-strict partition, and 1 ≤ i<j ≤ m.
We call the subscript pair (i, j) small if λi + λj < 2k + 1 + j − i, or big otherwise.
We call the k-partition λ small if all subscript pairs of λ are small, or big otherwise.
We always denote λ0 := n+ k + 1 for convention, so that (0, j) is treated as a big
subscript pair regardless of whether λ is small.

Lemma 3.4. Let λ = (λ1, · · · , λm) be a k-strict partition, and P = P(λ) =
{p1<p2< · · ·<pm}. Suppose 1 ≤ i < j ≤ m.

i) If (i, j) is big, so is (i− 1, j). Moreover, if i < j − 1, then (i, j − 1) is big.
ii) If λ is big, then there exists an integer 1 < a ≤ m, such that for any

1<i ≤ a, (1, i) is big, and that for any a<j ≤ m, (1, j) is not big.
iii) For any 1 ≤ j ≤ m, there exists a unique integer 0 ≤ a < j, such that for

any 0 ≤ i ≤ a, (i, j) is big, and that for any a+ 1 ≤ t<j, (t, j) is not big.

Proof. Statement i) follows immediately from Definition 3.3.
If λ is big, then there exists a big pair (p, q) where p < q. By using the first

half of i) repeatedly, we conclude that (1, q) is big. Set a = max{b|(1, b) is big}.
Then (1, j) is small for any a<j ≤ m. By the second half of i), (1, i) is big for all
1 < i ≤ a. Hence, statement ii) holds.

The argument for statement iii) is similar to that for statement ii). �
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Due to formula (3.3), we define a map f : PN (k) × [m] → [0,m − 1] by letting
f(λ, j) count the number of big subscript pairs of the form (i, j). Namely,

(3.6) f(λ, j) := j − 1−#{i < j : λi + λj ≤ N − 2m− 1 + j − i}.

Notice N − 2m − 1 = 2k for N = 2n + 1. In particular, we have f(λ, j) ≤ j − 1
for any j, and f(λ, j) = 0 if m = 1. Moreover, the value f(λ, j) coincides with the
unique number a in Lemma 3.4 iii). We will prove a result similar to Proposition
3.5 also for OG(m, 2n+ 2).

Proposition 3.5. Let λ, µ be k-strict partitions. If |λ| + |µ| < 2n, then for all j,
the inequality f(λ,m+ 1− j) + f(µ, j) ≤ n+ k − λm+1−j − µj holds.

Proof. If m = 1, then f is a constant map with image 0, and hence the expected
inequality becomes trivial by noting k = n− 1. Now we consider m ≥ 2, and give
the proof by contradiction.

Assume f(λ,m + 1 − j) + f(µ, j) > n + k − λm+1−j − µj for some j. Then it
directly follows from the definition of the map f that

λm+1−j +µj > n+k−f(λ,m+1− j)−f(µ, j) ≥ n+k− (m− j)− (j−1) = 2k+1.

Moreover, either λm+1−j or µj must be less than k+1 (otherwise, we would deduce

a contradiction from the inequalities |λ|+ |µ| ≥
∑m+1−j
i=1 λi +

∑j
i=1 µi ≥ 2k + 2 +∑m−j

i=1 (k + 2) +
∑j−1
i=1 (k + 2) = 2n + (m − 1)k ≥ 2n). Without loss of generality,

we assume λm+1−j ≤ k, which implies µj ≥ k + 2 and hence µj−1>µj by the
definition of k-strict partitions. Here we use the above convention µ0 = n + k + 1
when j = 1. Thus µj−1 + µj ≥ 2k + 5>2k + 1 + j − (j − 1). That is, (j − 1, j)
is a big subscript pair. Hence, all subscript pairs (i, j) are big by Lemma 3.4 iii),
implying f(µ, j) = j − 1. Consequently, we denote a := f(λ,m + 1 − j) and have
λm+1−j + µj > n+ k − a− j + 1. Without loss of generality, we assume

(3.7) λm+1−j + µj = n+ k − a− j + 2.

(Otherwise, λm+1−j + µj > n + k − a − (j − 1) + 1. Let µ̃ = (µ1 − 1, · · · , µj − 1,
µj+1, · · · , µm). It still follows from µ̃j = µj−1 ≥ k+1 that f(µ̃, j) = j−1 = f(µ, j),
and hence a+ f(µ̃, j) > n+ k − λm+1−j − µ̃j . Hence, we can replace µ by µ̃.)

Notice that a is the unique number in Lemma 3.4 iii) with respect to m+ 1− j.
Thus for any i ≤ a, (i,m+ 1− j) is a big subscript pair, namely

(3.8) λi + λm+1−j ≥ 2k + 1 +m+ 1− j − i = N −m+ 1− j − i.
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Hence,

|λ|+ |µ|

≥
a∑
i=1

λi +

m+1−j∑
i=a+1

λi +

j∑
i=1

µi

≥
a∑
i=1

(2k + 2 +m− j − i− λm+1−j) + (m− j − a+ 1)λm+1−j + jµj +
j(j − 1)

2

=(k + 2 + n− j)a− a(a+ 1)

2
+ (n− k − j − 2a+ 1)(n+ k − a− j + 2− µj)

+ jµj + j(j − 1)/2

=(2a+ 2j −m− 1)µj + L0(j, a)

=I(j, a, µj)

where the functions L : R2 → R and I : R3 → R are defined by

L0(x, y) :=
3

2
y2 + (2x− 2n− 7

2
)y +

3

2
y2 − (2n+

7

2
)x+ n2 + 3n− k2 − k + 2,

I(x, y, z) := (2x+ 2y −m− 1)z + L0(x, y).

We want to show I(j, a, µj) ≥ 2n for all j ∈ [m]. We notice k+2 ≤ µj ≤ n+k−j+1,
and I(x, y, z) is linear in z.

(i) Assume 2a+ 2j −m− 1 ≥ 0. Then we have

I(j, a, µj) ≥ I(j, a, k + 2) =
3

2
a2 − (2n− 2k − 2j − 1

2
)a+ L1(j)

with L1(j) depending only on j. As a quadratic function in y, I(j, y, k+ 2)
takes minimum value at y = 1

3 (2n − 2k − 2j − 1
2 ). While a is an integer,

I(j, a, k+ 2) takes minimum value at the integer most close to 1
3 (2n− 2k−

2j − 1
2 ), or equivalently most close to 1

3 (2n− 2k − 2j). Therefore,

I(j, a, µj) ≥ I(j,
1

3
(2n− 2k − 2j), k + 2) =

5

6
j2 − 1

6
(4n− 4k − 1)j + L2(n, k)

with L2(n, k) independent of j. Since j is an integer, I(j, 13 (2n − 2k −
2j), k+2) takes minimum value at the integer most close to 1

5 (2n−2k−1),

which is most close to 1
5 (2n− 2k) as well. Noting k = n−m and by direct

calculations, we have

I(j, a, µj) ≥ I(
1

5
(2n− 2k),

1

3
(2n− 2k − 2j), k + 2) = 2n+ n(m− 1)− 4

5
m2 +

2

5
m.

Hence, I(j, a, µj) ≥ 2n, following from

(3.9) n(m− 1)− 4

5
m2 +

2

5
m ≥ 0 due to n > m ≥ 2.

(ii) Assume 2a+ 2j −m− 1 ≥ 0. Then we have

I(j, a, µj) ≥ I(j, a, n+ k − j + 1) =
3

2
a2 + (2k − 3

2
)a+ L3(j).
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Since a = f(λ,m+ 1− j) ∈ [0,m− j] and 2k − 3

2
>0 for m < n, we have

I(j, a, µj) ≥ I(j, 0, n+ k − j + 1) = −j
2

2
+ (n+ k − 1

2
)j + (n− k + 1)(3.10)

≥ I(1, 0, n+ k − 1 + 1) = 2n.(3.11)

Here the second inequality holds by noting the function I(j, 0, n+k−j+1)
in j is increasing on [1,m].

In either cases, we deduce the contradiction 2n > |λ|+ |µ| ≥ 2n. �

Remark 3.6. The above arguments are also valid for the case m = n ≥ 3, except
that the reason “2k − 3

2 > 0 for m < n” for obtaining (3.10) should be replaced

by “0 and 1 are the integers most and equally close to 1
2 −

2
3 · 0”. For the case

m = n = 2, the inequality (3.9) does not hold, while an individual verification can
be made easily.

Corollary 3.7. Let λ, µ be k-strict partitions. If |λ|+ |µ| < 2n, then P∨(λ) � P(µ)
and [Xλ] ∪ [Xµ] 6= 0.

Proof. Write P = P∨(λ) = {p∨1 < · · · < p∨m} and Q = P(µ) = {q1 < · · · < qn}. By
the combination of the formulas (3.3), (3.5) and (3.6), P∨ ≤ Q holds if and only if
for all j ∈ [m], the following inequality holds.

f(λ,m+1−j)+f(µ, j) ≤ n+k−λm+1−j−µj−1+

{
1, if λm+1−j ≤ k
0, if λm+1−j > k

+

{
1, if λµj ≤ k
0, if λµj > k

.

Since |λ| + |µ| < 2n, either λm+1−j ≤ k or µj ≤ k must hold (as from the second
paragraph of the proof of Proposition 3.5). It follows that

0 ≤ −1 +

{
1, if λm+1−j ≤ k
0, if λm+1−j > k

+

{
1, if λµj ≤ k
0, if λµj > k

.

Therefore we have P∨(λ) � P(µ) by Proposition 3.5 and the equivalences in (3.4),
and consequently [Xλ] ∪ [Xµ] 6= 0 holds by Proposition 2.1. �

3.3. Even orthogonal Grassmannians. Recall k = n+1−m for OG(m, 2n+2),
and we restrict to 2 ≤ m < n. Schubert varieties of X = OG(m, 2n+2) are indexed
by elements in the set

P2n+2(k, n) := {(λ, 0)
∣∣∣λ is a k-strict partition inside an m× (n+ k) rectangle;

λj 6= k for all j
}⋃

{(λ, t)
∣∣∣λ is a k-strict partition inside an m× (n+ k) rectangle;

λj = k for some j; t ∈ {1, 2}
}.

This becomes quite a bit more involved then odd orthogonal Grassmannians, due to
the disconnectedness of OG(n+ 1, 2n+ 2). There exists an alternate isotropic flag

F̃• with the properties (1) F̃⊥2n+2−i = F̃i = Fi for all i ∈ [n], and (2) the connected

component of F̃⊥n+1 = F̃n+1 in OG(n + 1, 2n + 2) is distinct from that of Fn+1.
Both isotropic flags are needed in defining Schubert varieties with subscripts (λ, 1)
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or (λ, 2) by rank conditions. By [5, Proposition 4.7], there is a bijection Ψ given by

Ψ :P2n+2(k, n) −→ S(X) = {P ⊂ [1, 2n+ 2] | pi + pj 6= 2n+ 3, ∀i 6= j}
(λ, t) 7→ P(λ, t) = (p1(λ, t), · · · , pm(λ, t)) with

(3.12) pj = pj(λ, t) = n+k−λj+#{i < j|λi+λj ≤ N−2m−1+j− i}+g(λ, t, j)

where the function g : P2n+2(k, n)× [m]→ {1, 2} is defined by

(3.13) g(λ, t, j) :=

{
1, if λj > k, or λj = k < λj−1 and n+ j + t is even,

2, otherwise.

The bijection Ψ satisfies the following properties:

(3.14) (i) λj ≤ k ⇐⇒ pj > n; (ii) λj = k < λj−1 ⇐⇒ pj ∈ {n+ 1, n+ 2}

The Schubert variety XP = XP(λ,t)(F•) = X(λ,t)(F•) is of codimension |λ|, inde-
pendent of the type t of λ. We can simply denote Xλ = X(λ,0) without confusion.
If n + 2 /∈ P, then XP = {Σ ∈ X | dim(Σ ∩ Fpj ) ≥ j, ∀1 ≤ j ≤ m}, while if
n+ 2 ∈ P, then we have

XP = {Σ ∈ X | dim(Σ ∩ Fpj ) ≥ j, if pj 6= n+ 2; dim(Σ ∩ F̃n+1) ≥ j, if pj = n+ 2}.

For P = P(λ, t), we define t(P) = t. As shown in [5, section 4.3], we have

Proposition 3.8. For any P, P̂ ∈ S(X), XP ⊆ X
P̂

if and only if both of the
following hold.

(1) P ≤ P̂;
(2) if p̂i = n+ 2 for some i, then pi 6= n+ 1.

With respect to the identification P2n+2(k, n)→WPm , (λ, t) 7→ u = u(λ, t), the
dual (λ, i)∨ is the element in P2n+2(k, n) that corresponds to w0uwPm . The dual
index set P∨ = P(λ, i)∨ := P((λ, i)∨) is given by (see [22, Lemma 3.3])

(3.15) p∨j =

{
2n+ 3− pm+1−j , if n is odd or pm+1−j 6∈ {n+ 1, n+ 2},
pm+1−j , if n is even and pm+1−j ∈ {n+ 1, n+ 2}.

For any (λ, t) ∈ P2n+2(k, n) and j ∈ [m], we associate a number f(λ, j) as defined
in (3.6), which is independent of the type t of λ. Notice N − 2m + 1 = 2k + 1 for
N = 2n+ 2.

Proposition 3.9. Let (λ, t1) and (µ, t2) be in P2n+2(k, n), and satisfy |λ|+ |µ| <
2n+ 1.

(1) For any j ∈ [m], g(λ, t1,m+ 1− j) + g(µ, t2, j) ≥ 3.
(2) For any j ∈ [m], we have f(λ,m+ 1− j) + f(µ, j) ≤ n+ k− λm+1−j − µj.

Proof. We give the proof by contradiction.
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(1) Assume g(λ, t1,m + 1 − j) + g(µ, t2, j) < 3 for some j, then it follows from
the definition in (3.13) that λm+1−j ≥ k and µj ≥ k both hold. Then we have

|λ|+ |µ| ≥
m+1−j∑
i=1

λi +

j∑
i=1

µj ≥
m−j∑
i=0

(k + i) +

j−1∑
i=0

(k + i)

= (m+ 1)k + (j − m+ 1

2
)2 +

m2 − 1

4

≥ (m+ 1)k +
m2 − 1

4

= 2n+ 1 + n(m− 1)− 3

4
m2 − 1

4
.

The last equality holds by noting k = n+ 1−m. Since 2 ≤ m < n,

(3.16) n(m− 1)− 3

4
m2 − 1

4
≥ (m+ 1)(m− 1)− 3

4
m2 − 1

4
=

1

4
(m2 − 5) ≥ −1

4
.

This implies a contradiction 2n + 1 > |λ| + |µ| ≥ 2n + 1 − 1
4 , since |λ| + |µ| is an

integer.
(2) Assume f(λ,m + 1 − j) + f(µ, j) > n + k − λm+1−j − µj for some j ∈ [m].

Then

λm+1−j + µj > n+ k − (m− j)− (j − 1) = 2k

First notice that either λm+1−j < k or µj < k must hold. Otherwise, they are both
larger than or equal to k, and either of them must be larger than k, say µj ; then
we would deduce the following contradiction.

2n+ 1 > |λ|+ |µ| ≥
m+1−j∑
i=1

λi +

j∑
i=1

µj ≥ (m+ 1− j)k + j(k + 1)

= (m+ 1)(n+ 1−m) + j

= 2n+ j −m2 + n(m− 1) + 1

≥ 2n+ 1−m2 + (m+ 1)(m− 1) + 1 = 2n+ 1.

Without loss of generality, we assume λm+1−j < k, which implies µj ≥ k + 2
and consequently f(µ, j) = j− 1. Hence, we have λm+1−j +µj > n+ k− a− j+ 1,
with a as in Lemma 3.4, iii). Without loss of generality, we can assume

(3.17) λm+1−j + µj = n+ k + 2− j − a

(Otherwise, we can replace µ by µ̃ := (µ1 − 1, µ2 − 1, · · · , µj − 1, µj+1, · · · , µm)
by the same arguments as for (3.7) in the proof of Proposition 3.5.) Thus for any
i ≤ a, (i,m+1−j) is a big subscript pair, namely λi+λm+1−j ≥ 2k+m+1−j− i.
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Hence we have

|λ|+ |µ| ≥
a∑
i=1

λi +

m+1−j∑
i=a+1

λi +

j∑
i=1

µj

≥
a∑
i=1

(2k +m+ 1− j − i− λm+1−j) + (m+ 1− j − a)λm+1−j + jµj +
j(j − 1)

2

= (k + n+ 2− j)a− a(a+ 1)

2
+ (n− k + 2− j − 2a)(n+ k + 2− j − a− µj)

+ jµj +
j(j − 1)

2
= J(j, a, µj)

where J(x, y, z) = I(x, y, z) − x − y − z + n + k + 3 with I(x, y, z) defined in the
proof of Proposition 3.5. By using the same analysis as therein, we conclude the
following:

(i) If 2a+ 2j − n+ k − 2 ≥ 0, then

J(j, a, µj) ≥ J(
1

5
(2n−2k),

1

3
(2n−2k−2j), k+2) = 2n+1+n(m−1)−1

5
(4m2−6m+7).

Since 2 ≤ m < n for N = 2n+ 2, we have

n(m−1)−1

5
(4m2−6m+7) ≥ (m+1)(m−1)−1

5
(4m2−6m+7) =

1

5
(m2+6m−12) > 0.

(ii) If 2a+ 2j−n+ k− 2 < 0, then J(j, a, µj) ≥ J(1, 0, n+ k− j+ 1) = 2n+ 1.

In either cases, we deduce the contradiction 2n+ 1 > |λ|+ |µ| ≥ 2n+ 1. �

Corollary 3.10. Let (λ, t1) and (µ, t2) be in P2n+2(k, n), and satisfy |λ| + |µ| <
2n+ 1. Then P∨(λ, t1) � P(µ, t2) and X(λ,t1) ∪X(µ,t2) 6= 0.

Proof. We simply denote P∨ := P∨(λ, t1) and P̂ := P(µ, t2). By Proposition 3.9 (1)
and the definition of g in (3.13), λm+1−j = k < λm−j and µj = k < µj−1 cannot
both hold. Then by property (ii) in (3.14), we have p∨i 6= n+1 whenever p̂i = n+2.

Set p̄∨j = 2n+3−pm+1−j for all j ∈ [m]. Then p̄∨j = p∨j except when n is even and
pm+1−j ∈ {n+1, n+2}. In the exception, p̄∨j ∈ {n+1, n+2}, λm+1−j = k < λm−j

and consequently p̂j 6∈ {n+ 1, n+ 2} by property (ii) in (3.14). Thus P∨ ≤ P̂ if and
only if for all j ∈ [m], p̄∨j ≤ p̂j holds, which is equivalent to the following inequality:

f(λ,m+ 1− j) + f(µ, j) ≤ n+ k − λm+1−j − µj − 3 + g(λ, t1,m+ 1− j) + g(µ, t2, j).

Since |λ|+ |µ| < 2n+ 1, the above inequality does hold by Proposition 3.9. Hence,
P∨(λ, t1) � P(µ, t2) holds by Proposition 3.8. Consequently, X(λ,t1) ∪X(µ,t2) 6= 0
by Proposition 2.1. �

3.4. Proof of Theorem 1.1 for classical types.
(i) Case Bn(m) with m < n. Then k = n−m. By Corollary 3.7, [Xλ]∪[Xµ] 6= 0 if

|λ|+ |µ| < 2n. Thus e.d.(G/Pm) ≥ 2n−1. By (3.2), [X(1,··· ,1)]∪ [X(n+k,0,··· ,0)] = 0.
Thus e.d.(G/Pm) < m+ n+ k = 2n. Hence, e.d.(G/Pm) = 2n− 1.

(ii) Case Dn+1(m) with 2 ≤ m < n. Then k = n + 1 − m. By Corollary
3.10, we have e.d.(G/Pm) ≥ 2n. By (3.2), [X(1,··· ,1)] ∪ [X(n+k,0,··· ,0)] = 0. Thus
e.d.(G/Pm) < m+ n+ k = 2n+ 1. Hence, e.d.(G/Pm) = 2n.
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(iii) Cases An(m), Bn(n) ∼= Dn+1(n) ∼= Dn+1(n+1) and Dn+1(1). These togeth-
er with cases Cn(1), E6(1) ∼= E6(6) and E7(7) are a special class of Grassmannians,
called minuscule Grassmannians. There are nice properties of minuscule Grass-
mannians. For instance, we have c1(G/Pm) = h(D)[Xsm ] (see e.g. [8, section 2.1]).
Thus the quantum variable q̄m in QH∗(G/Pm) = H∗(G/Pm)[q̄m] has degree

deg q̄m = 〈c1(G/Pm), [Xsm ]h〉 = h(D),

the Coxeter number of the Dynkin diagram of G. Therefore for any u, v ∈ WPm

with `(u) + `(v) < h(D), by the nonvanishing property (Proposition 2.2), we have

[Xu] ∪ [Xv] = [Xu] ? [Xv] 6= 0.

The equality follows immediately from the Z-graded algebra structure ofQH∗(G/Pm).
Hence e.d.(D(m)) ≥ h(D)− 1.

(1) Considering (3.1) for type An, we have 0 = cm(S∨)∪cn+1−m(Q) = [X(1,··· ,1)]∪
[X(n+1−m,0,··· ,0)]. Hence e.d.(An(m)) < m+ n+ 1−m = n+ 1 = h(An).

(2) For Bn(n), by (3.2) we have [X(1,··· ,1)]∪[X(n+k,0,··· ,0)] = 0, hence e.d.(Bn(n)) <
m+ n+ k = 2n = h(Bn).

(3) Dn+1(1) is a quadric hypersurface Q in P2n+1 of (complex) dimension 2n =
h(Dn+1). Since dimH2n(Q) > 1 , for any u ∈ WP1 with `(u) = n, there
exists v ∈ WP1 (possibly v = u) with `(v) = n = dimQ− n = `(w0uwP1

),
such that v 6≤ w0uwP1 . It follows that [Xu] ∪ [Xv] = 0 by Proposition 2.1.
(In fact H2n(Q) = Z[Xsn···s1 ] + Z[Xsn+1sn−1sn−2···s1 ], and the cup of such
distinct Schubert classes vanishes.) Hence, e.d.(Dn+1(1)) < 2n = h(Dn+1).

(4) Cn(1) = P2n−1 = A2n−1(1). Thus e.d.(Cn(1)) = 2n− 1 < h(Cn).

In all cases, we have e.d.(D(m)) < h(D). Hence, e.d.(D(m)) = h(D)− 1.
As it will be proved in the next section, we have e.d.(E6(6)) = 12 = h(E6) and

e.d.(E7(7)) = 19 = h(E7) + 1.
(iv) Case Cn(m). The Weyl group of types Bn and Cn are identical. The

Schubert structure constants for complete flag variety of type types Bn and Cn are
the same up to a power of 2. Write [Xλ] ∪ [Xµ] =

∑
ν e

ν
λ,µ[Xν ] for H∗(SG(m, 2n))

and [Xλ]∪ [Xµ] =
∑
ν f

ν
λ,µ[Xν ] for H∗(OG(m, 2n+1)). As a special case [5, section

2.2] of [1, section 3.1], we have

fνλ,µ = 2`k(ν)−`k(λ)−`k(µ)eνλ,µ

where `k(λ) denotes the number of parts λk which are strictly greater than k. In
particular, we have e.d.(Cn(m)) = e.d.(Bn(m)) = 2n− 1 = h(Cn)− 1. �

4. Proof of Theorem 1.1 for exceptional Lie types

In this section, we verify Theorem 1.1 for types E and F with the help of computer
computations. There are three rational homogeneous varieties of type G2 in total,
which are all of very small dimension (equal to 5 or 6). A full table of all the
(quantum) products has been obtained (see for instance [9, Table 4]), from which
we can read off e.d.(G2(1)) = e.d.(G2(2)) = 5 immediately.

By Proposition 2.1, it suffices to find incomparable pair (u,w) (i.e. u, v ∈ WPm

with u 6= w) such that `(u) + `(w0wwPm) = `(u) + dimG/Pm − `(w) as small as
possible. The minimum is equal to e.d.(G/Pm)+1. We interchange G/Pm with the
notation D(m) freely, where D is the Lie type of G. Effective good divisibility of
E6(1) and E7(7) (i.e. of Cayley plane and Freudenthal variety) have been implicitly
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contained in [8]. Indeed, we can read off e.d.(D(m)) from the relevant Hasse dia-
grams therein. The Hasse diagram of WPm is a graphical rendering of the Bruhat
order. A marking point in the Hasse diagram represents an element in WPm . For a
graph drawn horizontally (resp. vertically), a marking is on the j-th column (resp.
j-th row) if and only if the corresponding element in WPm is of length j. We also
call such marking of length j. A directed path in the horizontal (resp. vertical)
Hasse diagram is a path in which each edge goes from right to left (resp. from
down to up). For any u,w ∈ WPm , u ≤ w if and only if there is a directed path
connecting the markings u, v.

For cases E6(1) and E7(7), we include a part of the Hasse diagram from [8] below,
which are sufficient for our purpose. Therein σj is a Schubert class in H2j(D(m)).

σ8

σ5

σ1 σ0
σ1 σ0

σ10

σ11

σ̂12

σ17

σ13

σ14

σ15

σ16

σ12

E6(1) E7(7)

Indeed, in the Hasse diagram of E7(7), it is obvious that there does not exist any
directed path connecting the markings u = σ10 and w = σ17 (since the two paths
σ10−−σ11−−σ̂12−−σ13 and σ14−−σ15−−σ16−−σ17 cannot be connected). It follows that
u 6≤ w with `(u) = 10 and `(w) = 17. Thus for v := w0wwPm ∈ WPm , we have
`(v) = dim E7(7)− `(w) = 27− 17 = 10 and [Xu] ∪ [Xv] = 0. Hence, e.d.(E7(7)) <
`(u) + `(v) = 20. Furthermore for any ũ, ṽ ∈ WPm with `(ũ) + `(ṽ) = 19, we
conclude [Xũ]∪ [Xṽ] 6= 0, i.e. ũ ≤ w0ṽwPm =: w̃, or equivalently for any marking ũ
of length j and any marking w̃ of length 8 + j (= dim E7(7)− (19− `(ũ))) for any
1 ≤ j ≤ 9. This does hold for the fact that any marking of length 13 or 9 can be
connected to the marking σ12 of length 12 by some directed path. For j = 0, . . . , 4,
the statement is obvious. It follows that for 5 ≤ j ≤ 9, any marking of length j can
be connected to another marking of length 8 + j by a directed path (that passes
the markings in squares: a marking of length 9, the marking σ12 and a marking of
length 13). For E6(1), we consider the incomparable pair (σ5, σ8), which implies
e.d.(E6(1)) < `(σ5) + (dim E6(1)− `(σ8)) = 5 + (16− 8) = 13. It is obvious that for
0 ≤ j ≤ 6, any marking of length j and any marking of length 4+j(= 16−(12−j))
can be connected by some directed path. In conclusion, we have

e.d.(E6(1)) = 12, e.d.(E7(7)) = 19.

It is also easy to obtain e.d.(D(m)) by investigating a part of the Hasse diagram for
the cases of F4(1),F4(2),E6(2) and E7(1). We provide them in Figure 1 (starting
with the divisor class σ1) for the convenience of the interested readers, where we
have marked four incomparable pairs (σ5, σ7), (σ4, σ9), (σ4, σ10), (σ6, σ10).

In all cases, we can specify an incomparable pair (u,w) in Table 3, which results
in the coincidence of L := `(u) + `(v) with e.d.(G/Pm) + 1 (where v = w0wwPm)
after checking ũ ≤ w̃ for any `(ũ) = i and `(w̃) = i + L − 1 − dimD(m), for
all 1 ≤ i ≤ L−1

2 (see [13] for the codes by Mathematica 10.0). It follows that
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Figure 1. Part of Hasse diagram of D(m)

σ1

σ5

σ7

σ8

σ1

σ4

σ9

σ10

σ1

σ4

σ10

σ12

σ1

σ6

σ16

σ18

F4(1) F4(2) E6(2) E7(1)

e.d.(G/Pm) = `(u) + `(v) − 1. Comparing the quantity e.d. in Table 1 with the
quantity L in Table 3, we conclude the following immediately.

Proposition 4.1. The good effective divisibility e.d.(D(m)) for D of exceptional
type is precisely given in Table 1.

As we can see from Table 3, all the pairs (u,w) satisfy the property that u−1 is
again a Grassmannian permutation with respect to another D(m′), namely u−1 ∈
WPm′ . Thus if u were less than w, then any substring of w that gives u must start
with the same digit as for u. This observation, together with the Lifting property
[2, Proposition 2.2.7]of the Bruhat order, enables us to verify the incomparable
pairs even without using computers.

Example 4.2. For E7(3), we have u−1 ∈ WP7 , w = w′w′′ with w′ = s624534132456
belonging to WP7

. Hence,

u ≤ w ⇐⇒ u ≤ w′′ ⇐⇒ s7u ≤ s7w′′.
Here the first equivalence follows from the two properties: (1) any reduced expression
of u has to start with s7, by noting u−1 ∈ WP7 and using the third Corollary in
[15, section 10.2]; (2) w′ does not contain s7. The second equivalence follows from
the Lifting property of the Bruhat order. Now ū := s7u = s65432413 satisfies similar
property to u, i.e. ū−1 ∈ WP6 . Continuously using the equivalence of the above
form, we conclude

u ≤ w ⇐⇒ s432413 = s5s6s7u ≤ s532413 ⇐⇒ s432413 ≤ s413 = s4s1s3,

while the last inequality obviously fails to hold. (The last equality is our notation
convention.)

5. Morphisms to rational homogeneous varieties

In this section, we provide applications of good effective divisibility on the non-
existence of non-constant morphisms from complex projective manifolds to rational
homogeneous varieties. We will prove the main application Theorem 1.4 right after
Proposition 5.2, which cares about morphisms to Grassmannians.
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Table 3. An incomparable pair (u,w) for D(m)

D m u v w = w0vwPm L

1 s12321 s12342321 s2342321 13
2 s1232 s12342312312 s323432312 15

F4 3 s4323 s43213243243 s232123243 15
4 s43234 s43213234 s3213234 13

1 s65431 s13452431 s13452431 13
2 s1342 s65432451342 s3456245342 15

E6 3 s1345243 s65432413 s43245643245432413 15
4 s654324 s1345624534 s5341324564132451324 16

1 s765431 s76543245613452431 s6543245613452431 23
2 s765432451342 s765432451342 s564534132456734132456432451342 24
3 s765432413 s7654324561345243 s6245341324567541324561324532413 25

E7 4 s76543245134 s765432456134524 s45624534132456745341324563413245341324 26
5 s76543245 s765432456713456245 s45624534132456745341324563413245 26
6 s765432456 s765432456713456 s345624534132456724534132456 24
7 s7654324567 s7654324567 s13456245341324567 20

D m u v L
1 s876543245613452431 s87654324567813456724563452431 47
2 s8765432456713456245342 s87654324567813456724563451342 51
3 s87654324567134562453413 s8765432456781345672456345243 51
4 s8765432456713456245341324 s876543245678134567245634524 52

E8 5 s8765432456781345672456345 s87654324567134562453413245 51
6 s8765432456781345672456 s876543245671345624534132456 49
7 s876543245678134567 s8765432456713456245341324567 46
8 s876543245678 s87654324567134562453413245678 41

w = w0vwPm
1 s2456734562453413245678245341324567543245613452431
2 s543245671345624534132456783456245341324567245341324565432451342
3 s2453413245678543245671345624534132456783456245341324567654324561345243
4 s6543245671345624534132456713456245341324565432451342876543245678134567245634524

E8 5 s765432456713456245341324567564534132456341324543241387654324567134562453413245
6 s7654324567134562453413245678654324567134562453413245671345624534132456
7 s7654324567134562453413245678765432456713456245341324567
8 s7654324567134562453413245678

Recall Q2n = SO(2n+ 2,C)/P1 is a smooth quadric hypersurface in P2n+1. The
proof of the following proposition is from [17, Corollary 5.3].

Proposition 5.1. Let M be a connected complex projective manifold. If e.d.(M) ≥
2n, then any morphism ϕ : M → Q2n is a constant map.

Proof. For G/P1 = Q2n, we let u = sn · · · s2s1 and w = sn+1sn−1 · · · s2s1. Then
we have u,w ∈WP1 , Xu ∩Xw = ∅, w0uwP1

= w and [Xu] = [Xw]. Hence,

[ϕ−1(Xu)] ∪ [ϕ−1(Xw)] = ϕ∗([Xu]) ∪ ϕ∗([Xw]) = ϕ∗([Xu] ∪ [Xw]) = 0.
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Since e.d.(M) ≥ 2n = 2`(u), we have [ϕ−1(Xu)] = 0 ∈ H2n(M), so that ϕ is
not surjective. Composing with a linear projection from a linear subspace Λ of
P2n+1 disjoint from ϕ(M) of maximal dimension, we obtain a surjective morphism
ϕ̂ : M → Pdimϕ(M). Since e.d.(M) ≥ 2n > e.d.(Pdimϕ(M)) = dimϕ(M), it follows
that dimϕ(M) = 0. Hence, ϕ is a constant. �

The next proposition strengthens [16, Proposition 4.7], generalizing [26, Corol-
lary 3.2] and [18, Proposition 2.4], while the proofs are essentially the same as
theirs. Recall our notation convention G/Pm = D(m) for G of type D.

Proposition 5.2. Let M be a connected complex projective manifold, and D(m)
be a Grassmannian of classical type. If e.d.(M) > e.d.(D(m)), then any morphism
ϕ : M → D(m) is constant.

Proof. If D(m) = Dn+1(1), then we are done by Proposition 5.1.
If D is of type Dn+1 and m ∈ {n, n + 1}, then we consider Bn(n) instead, due

to the isomorphisms Dn+1(n) ∼= Dn+1(n+ 1) ∼= Bn(n).
For the remaining cases, we always consider the tautological vector bundles S∨

and Q over D(m). They have effective nonzero Chern classes (see e.g. [25, 5]):

c(S∨) =

m∑
i=0

ci(S∨) =

m∑
i=1

[Xsm−i+1···sm−1sm ],

c(Q) =

N−m∑
i=0

ci(Q) =

N−m∑
i=1

ai[Xv(i)].

Here v(i) denotes the element in WPm that corresponds to the (k-strict) partition
(i, 0, · · · , 0); N = e.d.(D(m)) + 1 by (3.2) and Theorem 1.1, and ai ∈ {1, 2} is
up to the type of G and whether i > n − m. Then we can write c(ϕ∗(S∨)) =
1 + η1 + · · ·+ ηm and c(ϕ∗(Q)) = 1 + ξ1 + · · ·+ ξN−m with ηi, ξi ∈ H2i(M) being
effective classes. Since 1 = c(S) ∪ c(Q), we have cm(S∨) ∪ cN−m(Q) = 0, implying
ηm∪ξN−m = 0. Since N = e.d.(D(m))+1 ≤ e.d.(M), by definition we have ηm = 0
or ξN−m = 0. By induction we conclude that either η1 = 0 or ξ1 = 0 must hold.
Notice η1 = c1(ϕ∗ detS∨) and ξ1 = c1(ϕ∗ detQ). We consider L = detS∨ if η1 = 0,
or L = detQ otherwise. In either cases, L is an ample line bundle over D(m) with
c1(ϕ∗L) = 0. Assume that ϕ is not a constant morphism. Then ϕ(x) 6= ϕ(y) for
some points x, y ∈ M . Take an irreducible curve C in M passing through x and
y. Then ϕ(C) is of dimension one, and ϕ∗([C]) is a nonzero effective curve class in
H2(D(m),Z). By projection formula, we have

0 = ϕ∗(c1(ϕ∗L) ∩ [C]) = c1(L) ∩ ϕ∗[C] > 0.

This implies a contradiction. Hence, ϕ is a constant morphism. �

Proof of Theorem 1.4. By Theorem 1.2, we have e.d.(G/P ) = e.d.(G/Pm) for some
αm ∈ ∆ \ ∆P . Recall that πm : G/P → G/Pm = D(m) denotes the natural
projection. Then πm ◦ ϕ : M → D(m) is a morphism with e.d.(M) > e.d.(D(m)).
Therefore πm ◦ ϕ is a constant morphism by Proposition 5.2. That is, ϕ(M) is
inside a fiber of πm.

The Dynkin diagram of ∆Pm = ∆ \ {αm} consists of r connected components of
type D(1), · · · ,D(r) respectively. Observe that the fiber Pm/P is isomorphic to a
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product X1 × · · · ×Xr with Xi = G(i)/P (i) being a rational homogeneous variety
(possibly a point) of type D(i). As long as Xr is not a point, we consider the

composition π̂ of the natural projections X1×· · ·×Xr → Xr → G(r)/P̂ =: D(r)(m̂),

where the P̂ is a maximal parabolic subgroup ofG(r) containing P (r). Clearly, either
of the following cases must hold: (1) D(r) has the same Lie type as D, and is of rank
|D(r)| < |∆|; (2) D(r) is of type A, h(D(r)) < h(D) − 1. Consequently, we always
have e.d.(G/P ) > e.d.(D(r)(m̂)). Hence, π̂ ◦ ϕ(M) is again a constant morphism
by Proposition 5.2. That is, ϕ(M) is inside the fiber π̂.

By considering iterated fibrations of G/P and using induction, we conclude that
ϕ is a constant morphism. �

Remark 5.3. The notion e.d.(M) can be naturally extended in the setting of Chow
rings A∗(M) as in [17]. The above propositions can also be directly generalized to
morphisms from (possibly singular) projective varieties M . The proof of Proposition
5.2 will also work, by adding one sentence “ By Kleiman’s transversality theorem,
there exist g, g′ ∈ G, such that ϕ−1(gXsm−i+1···sm−1sm)’s and ϕ−1(g′Xv(i))’s are
all generically reduced and of the same codimension as the corresponding Schubert
varieties; this ensures that ϕ∗([Xsm−i+1···sm−1sm ]) = [ϕ−1(gXsm−i+1···sm−1sm)] and

ϕ∗([Xv(i)]) = [ϕ−1(gXv(i))] are all effective classes in Ai(M)”.

As a consequence of Theorem 1.4, we obtain Corollary 1.5 and the follow propo-
sition, by directly comparing e.d.(G/Pm)’s using Theorem 1.1.

Corollary 5.4. Let G, G̃ be of the same classical type with rank(G) < rank(G̃). For

any parabolic subgroups P ⊂ G and P̃ ⊂ G̃, there does not exist any non-constant

morphism G̃/P̃ → G/P .
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[8] P.-E. Chaput, L. Manivel and N. Perrin, Quantum cohomology of minuscule homogeneous

spaces, Transform. Groups 13 (2008), no. 1, 47–89.
[9] R.E. Elliott, M.E. Lewers and L.C. Mihalcea, Quantum Schubert polynomials for the G2 flag

manifold, Involve 9 (2016), no. 3, 437–451.

[10] W. Fulton, Young tableaux. With applications to representation theory and geometry, London
Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.

[11] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Proc. Sympos.
Pure Math. 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.

[12] W. Fulton, C. Woodward, On the quantum product of Schubert classes, J. Algebraic Geom.

13 (2004), no. 4, 641–661.
[13] H. Hu, C. Li and Z. Liu, Codes for Grassmannians of exceptional type by Mathematica 10.0,

https://math.sysu.edu.cn/gagp/czli.



22 HAOQIANG HU, CHANGZHENG LI, AND ZHAOYANG LIU

[14] J.E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics 21, Springer-

Verlag, New York-Berlin, 1975.

[15] J.E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in
Mathematics 9, Springer-Verlag, New York-Berlin, 1980.
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