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Abstract. In this paper, we introduce quantum Demazure–Lusztig operators acting by ring
automorphisms on the equivariant quantum cohomology of the Springer resolution. Our main
application is a presentation of the torus-equivariant quantum cohomology in terms of gener-
ators and relations. We provide explicit descriptions for the classical types. We also recover
Kim’s earlier results for the complete flag varieties by taking the Toda limit.
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1. Introduction

The quantum cohomology ring QH∗(X) of a complex projective manifold X is a defor-
mation of the classical cohomology ring H∗(X) = H∗(X,C) by incorporating the Gromov–
Witten invariants. When X is a non-compact algebraic variety equipped with a nice re-
ductive group G action, the equivariant quantum product can still be defined via localiza-
tions (see e.g. [Liu13]). Symplectic resolutions are interesting examples of such varieties,
which usually come in pairs called symplectic duals [Kam22]. The symplectic duality is
a 3-dimensional mirror symmetry, generalizing well-known structures in geometric represen-
tation theory [BLPW16]. Okounkov and his collaborators initiated the study of the sym-
plectic duality via the enumerative geometry of the symplectic resolution, which is deeply
related to various structures in geometry, representation theory, and mathematical physics
[Oko18]. There have been studies of QH∗

G(X) for various examples of symplectic resolutions
[OP10, BMO11, Su16, MS13, MO19, Dan22, MP15, KMP21].

The Springer resolution, which is the cotangent bundle of the complete flag variety B of
a complex semisimple, simply-connected Lie group G, is the most classical example of the
symplectic resolutions. It is a resolution of the nilpotent cone in g = Lie(G) and admits a
natural action by G = G × C∗, where C∗ dilates the cotangent fibers. Let T be a maximal
torus of G with Lie algebra t, and denote T := T×C∗. The T-equivariant quantum cohomology
ring QH∗

T(T
∗B) can be defined as the deformation

QH∗
T(T

∗B) =
(
H∗

T(T
∗B)⊗ O(T∨

reg), ∗
)
,

due to the equivariant quantum Chevalley formula proved by Braverman, Maulik, and Ok-
ounkov [BMO11, Theorem 3.2]. Here T∨

reg is the complement of the union of root hyperplanes
in the complex dual torus T∨ (see Section 2).

Our first main theorem reveals a surprising symmetry in the equivariant quantum cohomol-
ogy ring of T ∗B. To explain this symmetry, let us start with the classical Springer theory.
Recall that the degenerate affine Hecke algebra Hℏ is a C[ℏ]-algebra generated by Sym(t∗) and
the group algebra C[W ], subject to interacting relations between them. As will be reviewed in
Section 2.1, Hℏ acts on the T-equivariant cohomology H∗

T(T
∗B), through an isomorphism of

convolution algebras [CG10, Lus88]. The operators corresponding to w ∈ W ⊂ Hℏ are usually
referred to as the Demazure–Lusztig operators [Gin98]. On the other hand, there is a natural
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Weyl group action on the coefficient ring O(T∨
reg) induced by the Weyl group action on T∨

reg.
The quantum Demazure–Lusztig operators Tw over QH∗

T(T
∗B) = H∗

T(T
∗B) ⊗ O(T∨

reg) is the
diagonal tensor product of these two actions, c.f. Definition 3.1. Our first main theorem is
the following unexpected result, for which we refer to Example 3.3 for a quick illustration with
T ∗P1.

Theorem A (Theorem 3.2). Every quantum Demazure–Lusztig operator is a ring automor-
phism of QH∗

T(T
∗B).

Observe that the usual Demazure–Lusztig operator interacts with the equivariant cup prod-
uct via Leibniz-type formulas [Gin98, §12], which is never a ring automorphism except for the
trivial case. As the quantum Demazure–Lusztig operators that we have defined create a pole
at the origin of the quantum variables, they cannot be projected down to the equivariant coho-
mology. The key ingredient in our proof is the stable basis introduced by Maulik and Okounkov
[MO19]. We achieve this aim by direct computations using an explicit formula about the mul-
tiplication of a divisor class with the stable basis due to the second named author [Su16]. The
proof uses some crucial structures appearing in the cotangent bundle situation.

As an application of the above theorem, we obtain a ring presentation for QH∗
T(T

∗B). For
any dominant weight λ, we define in (4.3) a square matrix Θ(λ) with values in QH2

T(T
∗B),

inspired from the quantum Chevalley formula. It leads to an effective way of finding relations
in the equivariant quantum cohomology, due to an observation in communicative algebra as
in Lemma 4.9. Via a Deformation Principle in Proposition 4.11, we obtain our second main
result.

Theorem B (Theorem 4.1). The T-equivariant quantum cohomology QH∗
T(T

∗B) is generated

by divisors with the relations tr
(
Θ(λ)k

)
=
∑

µ∈Wλ µ
k for all dominant weights λ and all k ≥ 1.

The above ring representation has an application in the study of the Calogero–Moser system,
which is an integrable system arising from the one-dimensional many-body problems (see e.g.
[OP81, Eti07, BH18] and references therein). Combining Theorem B and [BMO11, Theorem
3.2], we obtain an explicit type-free description of the classical trigonometric Calogero–Moser
map in Corollary 4.13. In Remark 4.16, we compare our construction with earlier descriptions
in terms of Lax matrices [OP81, DP98, BCS98] in various Lie types.

We are going to provide an explicit ring presentation of QH∗
T(T

∗B) in all classical types.
Instead of using the relations in Theorem B directly, we compute the characteristic polynomial
of Θ(λ). For instance, in type An−1, the flag variety B = Fℓn parameterizes complete flags
in Cn and the Springer resolution T ∗Fℓn parameterizes pairs (A, ϕ) for A an n × n nilpotent
matrix and ϕ ∈ Fℓn a complete flag of A-invariant subspaces. Among the family of Θ(λ), We
can find one matrix of the form

χ1
ℏ

1−q1/q2
ℏ

1−q1/q3
· · · ℏ

1−q1/qn
ℏ

1−q2/q1
χ2

ℏ
1−q2/q3

· · · ℏ
1−q2/qn

ℏ
1−q3/q1

ℏ
1−q3/q2

χ3 · · · ℏ
1−q3/qn

...
...

...
. . .

...

ℏ
1−qn/q1

ℏ
1−qn/q2

ℏ
1−qn/q3

· · · χn


, (1.1)

where χi = xi + ℏ
∑

a<i
qa/qi

1−qa/qi
− ℏ

∑
i<b

qi/qb
1−qi/qb

. The matrix (1.1) happens to coincide with

the one in [Eti07, §2.8]. The presentation for the T-equivariant quantum cohomology of T ∗B
can be stated as follows,
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Theorem C (Theorem 5.1). The torus-equivariant quantum cohomology of T ∗Fℓn is gener-
ated by divisors x1, . . . , xn with relations Ek(χ) − ek(t) for k = 1, . . . , n. Here Ek(χ) are the
coefficients of the characteristic polynomial of the matrix (1.1).

We will give a combinatorial description of Ek(χ) in Theorem 5.2 via matching over k-
subsets of {1, . . . , n}, which coincides with Feynman’s elementary computation [Pol19]. The
computations for other classical types are given in Theorem 5.4 (type B and type C) and
Theorem 5.7 (type D).

There is another application of our explicit description of QH∗
T(T

∗B). As explained in
[BMO11, §8], we can recover QH∗

T (B) by taking the Toda limit. In the context of quantum
Schubert calculus and mirror symmetry, it is an important problem to provide a precise de-
scription of the ring presentation of the (T -equivariant) quantum cohomology of B or, more
generally, of a partial flag variety. This problem has been solved for partial flag varieties of
type A [GK95, AS95, CF99] and for the complete flag variety B of general Lie type by Kim
[Kim99]. However, a precise description for partial flag varieties of non-A type in general is not
yet available. By taking the Toda limit, we are able to reobtain the presentation of QH∗

T (B)
for classical Lie types and discuss its connection with Kim’s description. For type An−1, the
matrix (1.1) (after conjugation) converges, under the Toda limit, to the well-known tridiagonal
matrix in quantum Schubert calculus:

x1 −1 0 · · · 0

q1/q2 x2 −1 · · · 0

0 q2/q3 x3 · · · 0

...
...

...
. . .

...

0 0 0 · · · xn


. (1.2)

This recovers the presentation obtained by Givental and Kim [GK95]. It would be interesting
to establish a direct (type-free) connection between both descriptions. Our approach to finding
the ring presentation of QH∗

T(T
∗B) may be generalized to the cotangent bundle of a partial flag

variety. Hence, it is potentially useful in solving the aforementioned problem for the partial
flag varieties.

The paper is organized as follows. In Section 2, we review the background of equivari-
ant quantum cohomology of the Springer resolution T ∗B. In Section 3, we define quantum
Demazure–Lusztig operators and show that the operators act on the equivariant quantum
cohomology of T ∗B by ring automorphisms. In Section 4, we give the ring presentation of
QH∗

T(T
∗B), as well as an explicit description of the classical trigonometric Calogero–Moser

system. In Section 5, we carry out computations of the ring presentation of QH∗
T(T

∗B) for all
classical Lie types. Finally, in Appendix A and Appendix B, we discuss the ring presentation
of QH∗

T (B) obtained by taking the Toda limit and provide some details for the computations
of QH∗

T(T
∗B) in type An−1.
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2. Preliminaries

In this section, we review some basic results about the quantum cohomology of T ∗B.

Notations. Let G be a complex, semi-simple, simply connected group with Lie algebra g, and
T ⊂ G be a maximal torus with Lie algebra t. Let R ⊂ t∗ be the root system of (g, t). Fix a
base Π = {αi}ri=1 ⊂ R of simple roots, and let {ωi}ri=1 ⊂ t∗ denote the fundamental weights
where r is the rank of G. Let R∨ = {α∨ | α ∈ R} ⊂ t denote the set of coroots. Since G is
simply connected, we can canonically identify the (co)character lattice with the weight (resp.
coroot) lattice:

X∗(T ) = Hom(T,C∗) ∼= SpanZ{ωi}ri=1, Hom(C∗, T ) ∼= SpanZR
∨.

Unless otherwise stated, by α > 0 we will always mean an element α in the set R+ of
positive roots. The associated reflection sα : t∗ → t∗ is defined by sα(λ) = λ− ⟨λ, α∨⟩α, where
⟨·, ·⟩ : t∗ × t → C is the natural pairing. We will also denote by sα the induced reflection on t.
The Weyl group W is generated by simple reflections si = sαi , for i = 1, . . . , r. It is equipped
with the Bruhat order ≥, and admits a standard length function ℓ : W → Z≥0. Let X∗(T )+
denote the set of dominant weights in X∗(T ). For any ±λ ∈ X∗(T )+ we denote by Wλ the
subgroup of W that stabilizes λ, which is generated by simple reflections si with ⟨λ, α∨

i ⟩ = 0.
Each coset uWλ in W/Wλ has a unique minimal length representative, denoted as ū. Therefore
W/Wλ can be identified with the subset W λ ⊂ W of minimal length representatives.

The degenerate affine Hecke algebra Hℏ is a graded C[ℏ]-algebra generated by {xλ}λ∈t∗ and
W such that

(1) xcλ+µ = cxλ + xµ, xλxµ = xµxλ, ∀λ, µ ∈ t∗, ∀c ∈ C;
(2) the elements w ∈ W form the Weyl group inside Hℏ.
(3) sixλ − xsi(λ)si = ℏ⟨α∨

i , λ⟩, ∀λ ∈ t∗,∀i = 1, . . . , r;

The grading on Hℏ is defined by deg xλ = 2,degw = 0, deg ℏ = 2.
Let T∨ := C∗ ⊗Z X∗(T ) be the complex dual torus, and T∨

reg be the complement of all the

root hyperplanes {qαv
= 1}α∈R+ . Here qα

v
is viewed as a function over T∨, and qα

v
=
∏

i(q
αv
i )ai

for α∨ =
∑

i aiα
∨
i . In the present paper, we will mainly take coefficients in

O(T∨
reg) = C

[
qα

v
, 1
1−qαv

∣∣α ∈ R
]
. (2.1)

For any weight λ ∈ X∗(T ), we will consider the linear function pλ in O(t) and the differential
operator ∂λ on O(T∨

reg), defined respectively by

pλ(α
∨) = ⟨λ, α∨⟩, ∂λq

αv
= ⟨λ, α∨⟩qαv

. (2.2)

We will also consider actions by the groups

G := G× C∗, T := T × C∗. (2.3)

2.1. Equivariant cohomology of Springer resolution. The complete flag variety B of G
parameterizes Borel subalgebras b of g. Let N denote the cone of nilpotent elements in g, i.e.
those x ∈ g with adx ∈ End(g) being nilpotent. The cotangent bundle T ∗B is isomorphic to
the subvariety

Ñ = {(A, b) | A ∈ N, A ∈ b} ⊂ N ×B

via the identification T ∗
bB

∼= [b, b] = n. The natural projection Ñ → N, or equivalently the

composition T ∗B∼= Ñ → N, is a resolution of singularities, called the Springer resolution.
Let B denote the standard Borel subgroup of G, whose Lie algebra is spanned by t and those

root spaces parameterized by positive roots. With the identification B = G/B, the cotangent
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bundle T ∗B admits a natural G-action with G-action on B by left multiplication and C∗-action
given by dilation. Precisely, for any (g, z) ∈ G, the action is given by

(g, z) · (xB, ξ) = (gxB, z−1g∗ξ),

where ξ is a cotangent vector at gB ∈ G/B and g∗ξ is pull back of it to cotangent vector at
gxB induced by the left translation of g.

Let Y denote T ∗B,B, or a point pt, and A ≤ G be a complex reductive subgroup. Let
us describe the A-equivariant cohomology H∗

A(Y ) = H∗
A(Y,C) of Y . Denote also by ℏ the

standard generator of H∗
C∗(pt). We have

H∗
T (pt) = Sym(t∗), H∗

T(pt) = Sym(t∗)[ℏ],

H∗
G(pt) = Sym(t∗)W , H∗

G(pt) = Sym(t∗)W [ℏ].

Note that T ∗B is a vector bundle over B, thus

H∗
G(T

∗B) = H∗
G(B) = H∗

G(B)[ℏ], (2.4)

and H∗
T(T

∗B) = H∗
T(B) = H∗

T (B)[ℏ]. (2.5)

Every λ ∈ X∗(T ) defines a line bundle Lλ := G ×B Cλ over B. The equivariant first Chern
classes of Lλ are denoted as:

DG,B
λ = cG1 (Lλ) ∈ H2

G(B), DT,B
λ = cT1 (Lλ) ∈ H2

T (B). (2.6)

Similarly, for A ≤ G, we denote by DA,T ∗B
λ the A-equivariant first Chern class of the line bundle

over T ∗B obtained via pullback of Lλ. Whenever there is no confusion, we will simply denote
all classes as Dλ.

Let St := T ∗B×N T ∗B denote the Steinberg variety, which inherits a G action. Let HG
∗ (St)

denote the G-equivariant Borel–Moore homology of the Steinberg variety, which has an asso-
ciative algebra structure via convolution, see [CG10]. The equivariant cohomology H∗

G(T
∗B)

admits a canonical action by HG
∗ (St), and hence by the degenerate affine Hecke algebra Hℏ, due

to an isomorphism Hℏ ≃ HG
∗ (St) of C[ℏ]-algebras proved by Lusztig [Lus88]. The isomorphism

can be explicitly described as follows.

(1) For any λ ∈ X∗(T ), xλ ∈ Hℏ is sent to the the diagonal push forward of Dλ from
T ∗B to St. In particular, for any γ ∈ HG(T

∗B), the action of xλ on γ is given by the
equivariant product with Dλ, i.e.

xλ(γ) = Dλ · γ.
(2) Let Pi := G/Pi, where Pi := B ∪ BsiB is the minimal parabolic subgroup containing

B. The fundamental class of the conormal bundle of B ×Pi
B inside B × B is a well

defined element in HG
∗ (St), and it corresponds to si − 1.

The degenerate affine Hecke algebra Hℏ also acts on the T-equivariant cohomology H∗
T(T

∗B) =
H∗

T(pt)⊗H∗
G(pt)

H∗
G(T

∗B). The operators xλ, w are all H∗
T(pt)-linear. Moreover, the operators

w ∈ W ⊂ Hℏ are also referred to as the Demazure–Lusztig operators, see [Gin98].
Due to Borel, there is an isomorphism,

O(t)
∼−→ H∗

G(B) (2.7)

which sends pλ to Dλ; moreover, the following holds.

Proposition 2.1 ([Bor53], see also [AF24]). We have the following ring presentation

H∗
T (B) = C[λ,Dλ]λ∈X(T )

/〈
f(Dλ)− f(λ) | f(λ) ∈ Sym(t∗)W

〉
,

where f(Dλ) is obtained by substituting λ by Dλ.
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2.2. Calogero–Moser system. The Calogero–Moser system is a Hamiltonian system in the
study of one-dimensional many-body problems. The system was originally written down in
its rational version and was generalized to the trigonometric case and the elliptic case by
Sutherland and Krichever, respectively (see e.g. [Eti07, BH18] and references therein).

For our purpose, we need the trigonometric Calogero–Moser system mostly and it is an inte-
grable system over O(T∨

reg × t)[ℏ] with Hamiltonian defined as follows. For any non-degenerate

W -invariant quadratic form C ∈ Sym2(t∗)W , we define the Hamiltonian to be

C(p)− ℏ2
∑
α>0

C(α∨, α∨)

(qαv/2 − q−αv/2)2
∈ O(T∨

reg × t)[ℏ], (2.8)

where pλ is defined (2.2) and naturally viewed as a function in O(T∨
reg × t). The trigonometric

Calogero–Moser system can be described by a C[ℏ]-linear embedding

ηclCM,ℏ : Sym(t∗)W [ℏ] ↪→ O(T∨
reg × t)[ℏ], (2.9)

whose image consists of Possion commuting functions characterized by

(1) for any f ∈ Sym(t∗)W , f(p) appears as the leading term of ηclCM,ℏ(f);

(2) for any C ∈ Sym2(t∗)W , ηclCM,ℏ(C) is the Hamiltonian defined in (2.8).

The existence of such a map can be ensured by the construction of Dunkl operators. For any
λ ∈ X∗(T ), the classical trigonometric Dunkl operator is

Dunλ := pλ − ℏ
∑
α>0

〈
λ, α∨〉 qα

v

1− qαv sα ∈ O(T∨
reg × t)[ℏ]⋊C[W ]. (2.10)

For any polynomial f(λ) ∈ Sym(t∗), writing

f(Dunλ) =
∑
w∈W

D(w, f, ℏ) · w ∈ O(T∨
reg × t)[ℏ]⋊C[W ],

where D(w, f, ℏ) ∈ O(T∨
reg × t)[ℏ], we define

D(f, ℏ) :=
∑
w

D(w, f, ℏ) ∈ O(T∨
reg × t)[ℏ].

Then ηclCM,ℏ(f) = D(f, ℏ) for f ∈ Sym(t∗)W .

Let D(T∨
reg) denote the C-algebra of differential operators on T∨

reg. The quantum version of
the trigonometric Calogero–Moser system can be similarly described by

ηCM,ℏ : Sym(t∗)W [ℏ] ↪→ D(T∨
reg)[ℏ]

characterized by similar conditions and can be constructed similarly using (quantum) trigono-
metric Dunkl operators [Hec97, EFMV11].

For our purpose, we need a gauge transformation. Let

δ =
∏
α>0

(qα
v − 1). (2.11)

This defines an automorphism ϑ over D(T∨
reg)[ℏ] given by ϑ(x) = δℏxδ−ℏ. By direct computa-

tion, we have

ϑ(qα
v
) = qα

v
and ϑ(∂λ) = ∂λ + ℏ

∑
α>0

⟨λ, α∨⟩ qαv

1− qαv .
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This induces an automorphism ϑcl of the Poisson algebra O(T∨
reg × t)[ℏ] such that

ϑcl(qα
v
) = qα

v
and ϑcl(pλ) = pλ + ℏ

∑
α>0

⟨λ, α∨⟩ qαv

1− qαv .

Let us denote

ηCM,ℏ = ϑ ◦ ηCM,ℏ, ηclCM,ℏ = ϑcl ◦ ηclCM,ℏ. (2.12)

2.3. Quantum cohomology. We will study the A-equivariant quantum cohomologyQH∗
A(X)

of a space X ∈ {B, T ∗B}. Here A ≤ G is a complex reductive subgroup. In particular for
X = T ∗B, we require that A contains {e} × C∗, so that the A-fixed locus XA is always
compact.

Note that G is simply connected. We have the identifications

SpanZR
∨ = Hom(C∗, T ) ≃ H2(X,Z).

Every positive coroot α∨ defines an SL2-subgroup Gαv ⊂ G, and then defines a rational curve
GαvB/B ⊂ B ⊂ T ∗B. Therefore the cone Eff(X) of effective classes in H2(X,Z) is generated
by the positive coroots. For each effective curve class β ∈ Eff(X) ⊂ H2(X,Z), and γ1, . . . , γk ∈
H∗

A(X), the k-point, genus 0, equivariant Gromov–Witten invariants are given by

⟨γ1, . . . , γk⟩X0,k,β =

∫
[M0,k(X,β)]vir

ev∗(γ1 ⊠ · · ·⊠ γk),

where [M0,k(X,β)]vir is the virtual fundamental class of the moduli space of k-pointed stable
maps to X, see [CK99] and [BMO11, section 4]. For X = T ∗B which is noncompact, the
integral is defined via equivariant residue, see [Liu13]. The quantum cohomology

QH∗
A(X) = (H∗

A(X)⊗C C[[qβ]]β∈Eff(X), ∗ )

is a deformation of the equivariant cohomologyH∗
A(X). The quantum product ∗ is a C[[qβ]]β∈Eff(X)-

bilinear product over QH∗
A(X) such that for any γ1, γ2, γ3 ∈ H∗

A(X), we have

(γ1 ∗ γ2, γ3) =
∑

β∈Eff(X)∪{0}

qβ⟨γ1, γ2, γ3⟩X0,3,β.

Here (·, ·) is the Poincaré pairing, which can be evaluated using equivariant residue in the case
of T ∗B.

It is well-known that QH∗
A(X) forms a graded commutative H∗

A(pt)-algebra with identity 1.

Here, the degree of qβ is defined to be

deg qβ = 2 ⟨−KX , β⟩ ,

where KX is the canonical bundle of X. In particular, the degree of qα
v
is zero in QH∗

A(T
∗B),

since KT ∗B is trivial.
On the trivial vector bundle on H2(X) with fiber H∗

A(X), there is a flat connection ∇, called
the Dubrovin connection and defined by

∇λ := ∂λ − λ∗, ∀λ ∈ H2(X),

where ∂λ is as given in (2.2), by identifying H2(X) with t∗. The equivariant cohomology
QH∗

A(X) is then equipped with an H∗
A(pt)-D-module structure, known as the A-equivariant

quantum D-module of X. The main results of [BMO11] are the following.

Proposition 2.2 ([BMO11, Theorem 3.2]).



8 CHANGZHENG LI, CHANGJIAN SU, AND RUI XIONG

(1) The quantum multiplication by Dλ is given by

xλ + ℏ
∑
α>0

〈
λ, α∨〉 qα

v

1− qαv (sα − 1).

(2) The quantum connection of T ∗B can be analytically extended to T∨
reg and is given by

∇λ = ∂λ − xλ − ℏ
∑
α>0

〈
λ, α∨〉 qα

v

1− qαv (sα − 1).

Moreover, the H∗
G(pt)-structure is given by the quantum Calogero–Moser map ηCM,ℏ.

(3) We have an O(T∨
reg)-algebra isomorphism

O(T∨
reg × t)[ℏ] ∼−→ QH∗

G(T
∗B) (2.13)

sending pλ to Dλ. Moreover, the H∗
G(pt)-structure is given by the classical Calogero–

Moser map ηclCM,ℏ.

Remark 2.3. Part (3) of the above proposition admits an equivalent version as follows. By
introducing

∆λ = Dλ + ℏ
∑
α>0

〈
λ, α∨〉 qα

v

1− qαv , (2.14)

we have an O(T∨
reg)-algebra isomorphism as (2.13), which sends pλ to ∆λ. In this case, the

H∗
G(pt)-structure is given by the classical Calogero–Moser map ηclCM,ℏ (without gauge transfor-

mation). The relation is summarized in the following diagram

O(T∨
reg × t∗)[ℏ]

pλ 7→Dλ

''
H∗

G(pt)
∼ // Sym(t∗)W [ℏ]

ηclCM,ℏ
66

ηclCM,ℏ ((

QH∗
G(T

∗B)

O(T∨
reg × t∗)[ℏ]

pλ 7→∆λ

77
ϑcl

OO

Remark 2.4. Note that Proposition 2.2 (3) shows that QH∗
G(T

∗B) is generated by divisors
Dλ (or equivalently classes ∆λ). The isomorphism of (2.13) is obtained after refining the
equivariant quantum cohomology

QH∗
G(T

∗B) = H∗
G(T

∗B)⊗C O(T∨
reg) (2.15)

by replacing the formal power series C[[qβ]]β with the function ring O(T∨
reg). In other words,

the quantum product can be analytically extended to the ring T∨
reg.

The same argument also applies to QH∗
T(T

∗B). That is, QH∗
T(T

∗B) is generated by divisors
Dλ (or equivalently ∆λ) and we can realize it over

QH∗
T(T

∗B) = H∗
T(T

∗B)⊗C O(T∨
reg). (2.16)

These facts are crucial when defining Quantum Demazure–Lusztig operators.
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3. Automorhisms of QH∗
T(T

∗B)

Let us define the main objects of this paper.

Definition 3.1 (Quantum Demazure–Lusztig operators). For any u ∈ W , we define the quan-
tum Demazure–Lusztig operator Tu to be the operator on QH∗

T(T
∗B) = H∗

T(T
∗B) ⊗ O(T∨

reg)
given by

Tu = u⊗ u, (3.1)

where the first u on the right-hand-side is an element of Hℏ, i.e. a usual Demazure–Lusztig
operator, and the second u denotes the induced action on O(T∨

reg) from that on T∨
reg, namely

u(qα
v
) := quα

v
.

This section is devoted to the following surprising theorem, which will play an important
role in finding a presentation of QH∗

T(T
∗B) in Section 4.

Theorem 3.2. For any u ∈ W and γ1, γ2 ∈ QH∗
T(T

∗B),

Tu(γ1 ∗ γ2) = Tu(γ1) ∗ Tu(γ2). (3.2)

As a result, Tu is a ring automorphism with respect to the quantum product.

Example 3.3. Consider the case G = SL(2,C). Let s := sα ∈ W be the only simple reflec-
tion, ϖ be the fundamental weight, and q := qα

v
denote the unique primitive effective curve

class. Note that −Dϖ = D−ϖ ∈ H∗
T(T

∗P1) is the pullback of the equivariant first Chern class

cT1 (O(1)) ∈ H∗
T(P1). By Proposition 2.2 (1),

Dϖ ∗D−ϖ = DϖD−ϖ + ℏ
q

1− q
(Dϖ −D−ϖ − ℏ).

We have

Ts(Dϖ) ∗ Ts(D−ϖ) = (D−ϖ + ℏ) ∗ (Dϖ − ℏ)

= DϖD−ϖ + ℏ
1

1− q
(Dϖ −D−ϖ − ℏ),

Ts(Dϖ ∗D−ϖ) = DϖD−ϖ + ℏ
q−1

1− q−1
(D−ϖ −Dϖ + ℏ)

= DϖD−ϖ + ℏ
1

1− q
(−D−ϖ +Dϖ − ℏ).

Thus
Ts(Dϖ ∗D−ϖ) = Ts(Dϖ) ∗ Ts(D−ϖ).

3.1. Stable basis. The stable basis was introduced by Maulik and Okounkov in their seminal
work on quantum cohomology of Nakajima quiver varieties [MO19]. It plays a crucial role in
our proof of Theorem 3.2. Let us briefly recall the definition of the stable basis for the Springer
resolution, see [MO19, Chapter 3] or [Su17] for more details.

Recall that the torus T acts on T ∗B, and the fixed points are (wB, 0) ∈ T ∗B for w ∈ W .
For any w ∈ W and γ ∈ H∗

T(T
∗B), we denote by γ|w the restriction of γ to the fixed point

(wB, 0). The definition of stable envelopes depends on a choice of a Weyl chamber in t. For
our purpose, we need to choose the negative Weyl chamber, for which we use − in the subscript
to indicate. Let B− denote the opposite Borel subgroup. The stable basis is characterized by
the following proposition.

Proposition 3.4 ([MO19, Su17]). There exists a unique family of classes{
Stab−(w) ∈ H2 dimB

T (T ∗B)
∣∣w ∈ W

}
which satisfies the following properties:
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(1) Stab−(w) is supported on the union of conormal bundle of opposite Schubert varieties
B−uB/B for u ≥ w, i.e., Stab−(w)|u = 0 unless u ≥ w;

(2) Stab−(w)|w =
∏

α>0,wα>0
(wα− ℏ)

∏
α>0,wα<0

wα;

(3) Stab−(w)|u is divisible by ℏ, for any u > w.

Moreover, the stable basis forms a basis of H∗
T(T

∗B) after inverting the equivariant parameters.

Proposition 3.5 ([Su16, Theorem 3.14]). For w ∈ W and λ ∈ X∗(T ), the following holds in
QH∗

T(T
∗B)

Dλ ∗ Stab−(w) = w(λ) Stab−(w)− ℏ
∑

α>0,wα>0

〈
λ, α∨〉 Stab−(wsα)

− ℏ
∑
α>0

〈
λ, α∨〉 qα

v

1− qαv

(
Stab−(w) + Stab−(wsα)

)
.

Remark 3.6. The above formula can also be deduced from Propositions 2.2 (1) as well as the
Chevalley formula [Su16, Theorem 3.7] of the stable basis for cup product.

Recall the class ∆λ defined in (2.14). Proposition 3.5 can be rewritten as

∆λ ∗ Stab−(w) = w(λ) Stab−(w)− ℏ
∑

α>0,wα>0

〈
λ, α∨〉 1

1− qαv Stab−(wsα)

− ℏ
∑

α>0,wα<0

〈
λ, α∨〉 qα

v

1− qαv Stab−(wsα). (3.3)

3.2. Proof of Theorem 3.2. Let us first prove the following lemma.

Lemma 3.7. For any w, u ∈ W and λ ∈ X∗(T ), we have

(1) Tu

(
Stab−(w)

)
= (−1)ℓ(u) Stab−(wu

−1);
(2) Tu(∆λ) = ∆uλ.

Proof. Since Stab−(w) has no quantum component, we have Tu(Stab−(w)) = u(Stab−(w)).

We know from [Su17, Lemma 3.2] that u
(
Stab−(w)

)
= (−1)ℓ(u) Stab−(wu

−1). This proves the
first part (1).

For the second part (2), it suffices to show the case when w = si is a simple reflection:

Tsi(∆λ) = si(Dλ) + ℏ
∑
α>0

〈
λ, α∨〉 qsiα

v

1− qsiαv

= Dsiλ + ℏ
〈
λ, α∨

i

〉
+ ℏ

∑
α>0,α ̸=αi

〈
siλ, α

∨〉 qα
v

1− qαv + ℏ
〈
λ, α∨

i

〉 q−αv
i

1− q−αv
i

= ∆siλ.

Here in the second equality, we have used the facts si(R
+ \ {αi}) = R+ \ {αi} and si(Dλ) =

sixλ · 1 = (xsiλ + ℏ⟨λ, α∨
i ⟩) · 1 = Dsiλ + ℏ⟨λ, α∨

i ⟩. □

With this lemma, we can prove the following special case of Theorem 3.2.

Proposition 3.8. For any w, u ∈ W and λ ∈ X∗(T ),

Tu(∆λ ∗ Stab−(w)) = Tu(∆λ) ∗ Tu(Stab−(w)). (3.4)
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Proof. The proof is given by direct computation using the definition of Tu, Lemma 3.7, and
(3.3). On one hand, we have

(−1)ℓ(u)Tu(∆λ) ∗ Tu(Stab−(w)) = ∆uλ ∗ Stab−(wu−1)

= w(λ) Stab−(wu
−1)− ℏ

∑
α>0,wu−1α>0

〈
uλ, α∨〉 1

1− qαv Stab−(wu
−1sα)

− ℏ
∑

α>0,wu−1α<0

〈
uλ, α∨〉 qα

v

1− qαv Stab−(wu
−1sα).

On the other hand, we have

(−1)ℓ(u)Tu(∆λ ∗ Stab−(w))

= w(λ) Stab−(wu
−1)− ℏ

∑
β>0,wβ>0

〈
λ, β∨〉 1

1− quβv Stab−(wsβu
−1)

− ℏ
∑

β>0,wβ<0

〈
λ, β∨〉 quβ

v

1− quβv Stab−(wsβu
−1)

We finish the proof by matching the coefficients in the two expressions above.

Case A. The coefficients of Stab−(wu
−1) are both w(λ).

Case B. Let α > 0 such that u−1α = β > 0. If wu−1α > 0, i.e. wβ > 0, we have〈
uλ, α∨〉 1

1− qαv Stab−(wu
−1sα) =

〈
λ, β∨〉 1

1− quβv Stab−(wsβu
−1).

Similarly, if wu−1α < 0, i.e. wβ < 0, we have〈
uλ, α∨〉 qα

v

1− qαv Stab−(wu
−1sα) =

〈
λ, β∨〉 quβ

v

1− quβv Stab−(wsβu
−1).

Case C. Let α > 0 such that u−1α = −β > 0. If wu−1α > 0, i.e. wβ < 0, we have〈
uλ, α∨〉 1

1− qαv Stab−(wu
−1sα) =

〈
λ,−β∨〉 1

1− q−uβv Stab−(wsβu
−1)

=
〈
λ, β∨〉 quβ

v

1− quβv Stab−(wsβu
−1).

Similarly, if wu−1α < 0, i.e. wβ > 0, we have〈
uλ, α∨〉 qα

v

1− qαv Stab−(wu
−1sα) =

〈
λ,−β∨〉 q−uβv

1− q−uβv Stab−(wsβu
−1)

=
〈
λ, β∨〉 1

1− quβv Stab−(wsβu
−1). □

We also need the following easy lemma.

Lemma 3.9. Let γ1, γ2, γ3 ∈ QH∗
T(T

∗B).

(1) Assume Tu(γ1 ∗ γ2) = Tu(γ1) ∗ Tu(γ2) and Tu(γ1 ∗ γ3) = Tu(γ1) ∗ Tu(γ3). Then for any
f2, f3 ∈ H∗

T(pt)⊗ O(T∨
reg),

Tu(γ1 ∗ (f2γ2 + f3γ3)) = Tu(γ1) ∗ Tu(f2γ2 + f3γ3).

(2) Assume Tu(γi ∗ γ) = Tu(γi) ∗ Tu(γ) for i = 1, 2 and any γ ∈ QH∗
T(T

∗B). Then

Tu(γ1 ∗ γ2 ∗ γ) = Tu(γ1 ∗ γ2) ∗ Tu(γ).
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Proof. The first one follows from the definition of Tu, while the second one follows from the
associativity of the quantum product. □

Now we can prove Theorem 3.2.

Proof of Theorem 3.2. Recall that by Proposition 3.4 the stable basis forms a basis of HT(T
∗B)

after inverting the equivariant parameters. Thus by Proposition 3.8 and Lemma 3.9 (1), (3.2)
is true for γ1 = ∆λ with λ ∈ X∗(T ) and arbitrary γ2 ∈ QHT(T

∗B). Since QHT(T
∗B) is

generated by classes ∆λ, the theorem follows from Lemma 3.9 (2). □

4. Presentation of Quantum Cohomology

The equivariant cohomology of T ∗B is generated by the divisors Dµ. Thus there is a natural
surjective morphism π of algebras over O(T∨

reg)[ℏ],

π : O(T∨
reg)[ℏ][µ,Dµ]µ∈X∗(T ) −→ QH∗

T(T
∗B). (4.1)

In this section, we will determine the kernel kerπ. More precisely, for any (anti-)dominant
weight λ ∈ X∗(T )± and positive integer k, we let

Rk
λ = tr

(
Θ(λ)k

)
−
∑

u∈Wλ

(uλ)k (4.2)

where Θ(λ) =
(
Θu,v(λ)

)
u,v∈Wλ is a square matrix of order |W λ| = |Wλ| defined by

Θu,v(λ) =


∆uλ, if u = v,

−ℏ⟨λ,αv⟩
1−quαv , if usα = v for some α ∈ R+ \R+

λ ,

0, otherwise.

(4.3)

Here R+
λ := R+

⋂
(
∑

si∈Wλ
Zαi), and we recall that usα ∈ W λ denotes the minimal length

representative of the coset usαWλ ∈ W/Wλ. The root α in the second case is unique [FW04].
The following theorem is the main result of this section.

Theorem 4.1. We have the following presentation:

QH∗
T(T

∗B) ∼= O(T∨
reg)[ℏ][µ,Dµ]µ∈X∗(T )

/〈
Rk
λ | λ ∈ X∗(T )+, k > 0

〉
.

Example 4.2. Let G = SL(2,C), and use the same notation as in Example 3.3. Then

Θ(ϖ) =

[
Dϖ+ℏ q

1−q
−ℏ

1−q−1

−ℏ
1−q

D−ϖ−ℏ q
1−q

]
,

and
1
2 tr

(
Θ(ϖ)2

)
=
(
Dϖ + ℏ q

1−q

)2
+ ℏ2

(1−q)(1−q−1)

= Dϖ ∗Dϖ + 2ℏ q
1−qDϖ − ℏ2 q

1−q .

Theorem 4.1 gives

Dϖ ∗Dϖ + 2ℏ
q

1− q
Dϖ − ℏ2

q

1− q
= ϖ2. (4.4)

Thus QH∗
T(T

∗B) is generated by Dϖ with relation (4.4).
On the other hand, T ∗B = T ∗P1 is also a hypertoric variety. Following [MS13], we denote

by x and y the fundamental class of the cotangent fibers at 0 and ∞, respectively. We denote
h = −ℏ. Then

x = −ϖ −Dϖ and y = ϖ −Dϖ.
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We thus get the following relation, compatible with [MS13, Theorem 1.1],

x ∗ y = q(h− x) ∗ (h− y).

Remark 4.3. Note that the G-equivariant (quantum) cohomology can be viewed as the invari-
ants ring under the left Weyl group action recalled at the beginning of Section 4.1 below. By
Lemma 4.4, it is not hard to obtain that

QH∗
G(T

∗B) ∼= O(T∨
reg)[ℏ][Dµ]µ∈X∗(T )

∼= O(T∨
reg × t∗)[ℏ].

This recovers the first part of Proposition 2.2 (3) by Braverman, Maulik, and Okounkov. Using
the second part of Proposition 2.2 (3), our result provides an application to the Calogero–Moser
system, see Corollary 4.13.

4.1. Construction of Relations. In this subsection, we will show that the equalities Rk
λ = 0

hold in QH∗
T(T

∗B).
Recall that the left Weyl group action on H∗

T(T
∗B) is induced by the left multiplication

action of G on T ∗B. By extending it linearly over O(T∨
reg), we get a left action of W on

QH∗
T(T

∗B). For w ∈ W , we use wL to denote this action. By noting that wL preserves line

bundles and using [MNS22, Equation (12)] 1, we have

Lemma 4.4. The following holds for any f ∈ H∗
T(pt), g ∈ O(T∨

reg), µ ∈ X∗(T ) and γ1, γ2 ∈
QH∗

T(T
∗B):

(1) wL(fgDµ) = w(f)gDµ;
(2) wL(γ1 ∗ γ2) = (wLγ1) ∗ (wLγ2).

Thus every wL is a ring automorphism of QH∗
T(T

∗B). Moreover, the above action of W
commutes with the action by the degenerate affine Hecke algebra Hℏ.

Lemma 4.5. Let u, v, w ∈ W and α ∈ R+ \R+
λ . We have

(1) Θ1,sα(λ) =
−ℏ⟨λ,αv⟩
1−qαv ;

(2) Tu(Θ1,w) = Θu,uw;
(3) vL ◦ Tu(Θ1,w) = Θu,uw.

Proof. Statement (1) follows directly from the definition of Θ(λ). Next, we need to verify
Statement (2) in each case of the definition of Θ(λ) (4.3). In the first case, we have Tu(Θ1,1) =
Tu(∆λ) = ∆uλ = Θu,u·1 by Lemma 3.7 (2); the second case follows from the definition of Tu;

if the third case occurs for Θ1,w (i.e. Θ1,w = 0) then so is Θu,uw. Lastly, since every entry in
Θ(λ) is fixed by the left Weyl group action vL by Lemma 4.4 (1), Statement (3) follows. □

Let
ςλ =

∑
w∈Wλ

(−1)ℓ(w) Stab−(w), (4.5)

denote the averaging class. Define

Σ(λ) =
(
vL ◦ Tu(ςλ)

)
u,v∈Wλ . (4.6)

Note that Tu(ςλ) is not fixed
2 by Wλ.

Lemma 4.6. For any w ∈ Wλ and u, v ∈ W λ, we have

(1) Tw(ςλ) = ςλ;

1The formula in loc. cit. was stated for QH∗
T (G/P ), while the whole set-up works for all G-varieties.

2Using [MNS22, Theorem 4.3] and [AMSS23, Proposition 9.7], we can show that sLi (ςλ) = ℏ+αi
ℏ−αi

ςλ for any

si ∈ Wλ.
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(2) Σ(λ)u,v = vL
(∑

w∈uWλ
(−1)ℓ(w) Stab−(w

−1)
)
.

Proof. Both statements follow immediately from Lemma 3.7 and the fact that ℓ(wu−1) ≡
ℓ(w) + ℓ(u) mod 2 for any u,w ∈ W . □

Define the diagonal matrix

Ξ(λ) = diag
(
uλ
)
u∈Wλ . (4.7)

As an application of Theorem 3.2, we have the following key proposition.

Proposition 4.7. For any λ ∈ X∗(T )±, we have

Θ(λ) ∗ Σ(λ) = Σ(λ) ∗ Ξ(λ), (4.8)

where the product of matrices is evaluated by the quantum product.

Proof. Let us first compare the (1, 1)-entry of both sides. By definition,

(Θ(λ) ∗ Σ(λ))1,1
=
∑

w∈Wλ

Θ(λ)1,w ∗ Σ(λ)w,1

= Θ(λ)1,1 ∗ Σ(λ)1,1 +
∑

α∈R+\R+
λ

Θ(λ)1,sα ∗ Σ(λ)sα,1

=
∑

w∈Wλ

(−1)ℓ(w)∆λ ∗ Stab−(w) + ℏ
∑

α∈R+\R+
λ

⟨λ, α∨⟩
1− qαv

∑
w∈Wλ

(−1)ℓ(w) Stab−(wsα)

= λ · ςλ = λ · Σ(λ)1,1.

Here the third equality uses the equality Tsα(ςλ) = Tsα(ςλ) by Lemma 4.6 (1) as well as the

fact (−1)ℓ(sα) = −1. The fourth equality follows from (3.3), and the facts that (i) w(λ) = λ
for any w ∈ Wλ, (ii) ⟨λ, α∨⟩ = 0 for every α ∈ R+

λ , and (iii) wα > 0 for every w ∈ Wλ and

α ∈ R+ \R+
λ .

For general u, v ∈ W λ, by applying vL ◦ Tu to the above equalities, we get

v(λ) · Σ(λ)u,v = vL ◦ Tu(λ · Σ(λ)1,1) = vL ◦ Tu

( ∑
w∈Wλ

Θ(λ)1,w ∗ Σ(λ)w,1

)
=
∑

w∈Wλ

Θ(λ)u,uw ∗ Σ(λ)uw,v

=
∑

w∈Wλ

Θu,w(λ) ∗ Σ(λ)w,v

= (Θ(λ) ∗ Σ(λ))u,v.

Here the second equality follows from Lemmas 4.4, 4.5, 4.6 and Theorem 3.2. This finishes the
proof of the proposition. □

Example 4.8. Let G = SL(2,C), and use the same notation as in Example 3.3. Then Propo-
sition 4.7 gives[

∆ϖ
−ℏ

1−q−1

−ℏ
1−q

∆−ϖ

]
∗
[

Stab−(id)

− Stab−(s)

sL Stab−(id)

−sL Stab−(s)

]
=

[
Stab−(id)

− Stab−(s)

sL Stab−(id)

−sL Stab−(s)

]
∗
[
ϖ

−ϖ

]
The next lemma works for any commutative algebra over an arbitrary field F.
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Lemma 4.9. Let Θ,Σ be square matrices of order m with entries in an F-algebra A, and
Ξ = diag(a1, . . . , am) with a1, . . . , am distinct elements in F. Assume

Θ · Σ = Σ · Ξ.
If there is at least one unit in each column of Σ, then det(Σ) is a unit in A.

Proof. Assume det(Σ) is not a unit in A. Then there is a maximal ideal m containing det(Σ),

so that A := A/m is a field and det(Σ) = 0 ∈ A. Note that the columns of Σ are all nonzero
vectors by our assumption, and hence are eigenvectors of Θ of distinct eigenvalues by the
hypothesis. Therefore they form a basis of A

m
. In other words, det(Σ) = det(Σ) is invertible,

resulting in a contradiction. □

Let us denote F = FracH∗
T(pt)((ℏ−1)), and consider the F-algebra

A = QH∗
T(T

∗B)⊗H∗
T(pt)

F. (4.9)

Proposition 4.10. For any λ ∈ X∗(T )±, the determinant detΣ(λ) is a unit in A.

Proof. For any v ∈ W λ, by [AMSS23, Proposition 9.7 and Lemma 7.3], we have

Σ(λ)1,v = (−1)dimBℏdimB +
(
terms of lower degrees in ℏ

)
,

Hence, it is a unit in A. Thus every column of Σ(λ) contains a unit in A (at the first row).
Moreover, the diagonal terms of Ξ(λ) are distinct elements in F. By Lemma 4.9, detΣ(λ) is a
unit in A. □

Proposition 4.11. For any λ ∈ X∗(T )± and k ∈ Z>0, in QH∗
T(T

∗B), we have

tr
(
Θ(λ)k

)
=
∑

u∈Wλ

(uλ)k. (4.10)

Proof. By Proposition 4.10, detΣ(λ) is a unit in A, so that Σ(λ) is invertible. Therefore by
Proposition 4.7, we have the following relation in A:

tr
(
Θ(λ)k

)
= tr

(
Σ(λ)−1 ∗Θ(λ)k ∗ Σ(λ)

)
= tr

(
Ξ(λ)k

)
=
∑

u∈Wλ
(uλ)k.

Notice that there is a natural embedding QH∗
T(T

∗B) ↪→ QH∗
T(T

∗B) ⊗HT(pt) F = A, and both
sides of the equality (4.10) take values in QH∗

T(T
∗B), the statement follows. □

4.2. Proof of Theorem 4.1. By Proposition 4.11, all Rk
λ are in the kernel of π. Once we

prove that they generate the entire kernel, this will finish our proof. The following Deformation
Principle is a key ingredient in our argument, the proof of which is similar to that of a lemma
by Siebert and Tian [ST97].

Proposition 4.12 (Deformation Principle). Let {Ri}i∈I be a family of elements in kerπ.
Assume for all i ∈ I

Ri = fi(Dµ)− fi(µ) mod ℏ,
where {fi}i∈I generates Sym(t∗)W . Then kerπ is generated by {Ri}i∈I .

Proof. We have the following diagram

O(T∨
reg)[ℏ][µ,Dµ]µ

π //

��

QH∗
T(T

∗B)

��
O(T∨

reg)[µ,Dµ]µ φ
// QH∗

T (T
∗B),
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where the vertical maps are modulo ℏ. Since T ∗B is a homomorphic symplectic variety, the
quantum product and the equivariant product coincide modulo ℏ [BMO11]. Hence, by Propo-
sition 2.1 and isomorphism (2.5), we see that

kerφ =
〈
f(Dµ)− f(µ) | f(µ) ∈ Sym(t∗)W

〉
.

Let J be the ideal generated by {Ri}i∈I . Assume J ̸= kerπ. Let γ be an element of minimal
ℏ-degree such that γ ∈ kerπ \ J . By the commutativity of the above diagram,

φ(γ mod ℏ) = π(γ) mod ℏ = 0.

Note that J/ ⟨ℏ⟩ = kerφ by our assumption. We can write

γ = γ1 + ℏγ2
for γ1 ∈ J and some γ2 /∈ J of ℏ-degree less than γ. Since J ⊂ kerπ, we have ℏπ(γ2) = 0,
which implies π(γ2) = 0. Hence, γ2 ∈ kerπ \ J , and the ℏ-degree of γ2 is less than that of γ,
which contradicts the choice of γ. □

Proof of Theorem 4.1. First of all, we have Rk
λ ∈ kerπ by Proposition 4.11. Modulo ℏ, the

matrix Θ(λ) becomes a diagonal matrix with entries Duλ for u ∈ W λ. Hence,

Rk
λ =

∑
u∈Wλ

(Duλ)
k −

∑
u∈Wλ

(uλ)k mod ℏ.

By [Hum78, Section 23.1], the set of polynomials
∑

u∈Wλ(uλ)k for all dominant weights λ and

k ≥ 1 spans the space Sym(t∗)W . Therefore the family of all Rk
λ satisfies the condition of the

Deformation Principle 4.12. We can conclude that all Rk
λ generate the kernel of π. □

4.3. Explicit formulae for the classical Calogero–Moser map. In this subsection, we
will give an explicit formula for the classical trigonometric Calogero–Moser map (2.8). Recall
that qα

v
is naturally a function over T∨

reg for any coroot α∨ and pλ defined in (2.2) is the linear
function over t. Both of them can be viewed as functions over T∨

reg × t naturally.
Let Y (λ) be the matrix obtained from Θ(λ) by replacing ∆uλ by puλ in (4.3). By Proposition

2.2 (3), we get immediately

Corollary 4.13. We have

ηclCM,ℏ

( ∑
u∈Wλ

(uλ)k
)

= tr(Y (λ)k) ∈ O(T∨
reg × t)[ℏ].

Remark 4.14. P. Etingof shared with us in private communication that our matrix Y (λ) can
be viewed as the matrix of the Dunkl operator under the basis W of O(T∨

reg × t)[ℏ] ⋊ C[W ],
provided that λ is strictly dominant (i.e., Wλ is trivial). In the rational case (analogous to our
case), this method yields the known explicit formula for the rational Calogero–Moser map in
both classical and quantum cases, obtained based on Lax pairs [SS93]. In the trigonometric
case (our case), Corollary 4.13 can be translated to the following trace-free formula:

tr

(∑
w∈W

Dunkwλ−
∑
w∈W

wDunkλw
−1

)
= 0. (4.11)

Recall that Dunλ is the classical trigonometric Dunkl operator defined in (2.10). It is worth
noting that the trigonometric Dunkl operators and Weyl group elements generate the degener-
ate Hecke algebra Hℏ, and thus, unlike the rational case, the two sums in (4.11) are not equal.
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To relate our result to the above formula, we need to note that

tr(Y (λ)k) = tr(Dunkλ) =
1

|W |
tr

(∑
w∈W

wDunkλw
−1

)
.

On the other hand, by extending [EFMV11, Lemma 2.2] to the trigonometric case, we can
conclude that

∑
w∈W Dunkwλ is the scalar matrix of ηclCM,ℏ

(∑
w∈W (wλ)k

)
. Hence,

ηclCM,ℏ

(∑
w∈W

(wλ)k

)
=

1

|W |
tr

(∑
w∈W

Dunkwλ

)
.

Corollary 4.13 is thus equivalent to (4.11). It is interesting to ask for a direct proof of (4.11).
Additionally, it should be noted that the trace-free formula (4.11) is not valid for the quantum
case.

In practical computation, rather than substituting square matrices of size |W | into a sym-
metric polynomial, our matrix is small and involves only matrix powers. This reduces the
computational complexity significantly.

Example 4.15 (Hamiltonian). Let λ ∈ X∗(T )+ be strictly dominant such that Wλ is trivial.
By direct computations, we have

tr
(
Y (λ)2

)
=
∑
w∈W

p2wλ + ℏ2
∑
w∈W

∑
α>0

〈
λ, α∨〉2 1(

1− qwαv
)(
1− q−wαv

)
=
∑
w∈W

p2wλ − ℏ2
∑
α>0

( ∑
w∈W

〈
wλ, α∨〉2) 1(

qαv/2 − q−αv/2
)2 .

Let C ∈ Sym2(t∗) be a non-degenerate quadratic form, which is unique up to a scalar. Thus,

0 ̸=
∑
w∈W

(wλ)2 = cλ · C ∈ Sym2(t∗),

for some constant cλ. Then we can rewrite the above by

cλ ·

(
C(p)− ℏ2

∑
α>0

C(α∨, α∨)(
qαv/2 − q−αv/2

)2
)
.

Corollary 4.13 shows

ηclCM,ℏ(C) = C(p)− ℏ2
∑
α>0

C(α∨, α∨)(
qαv/2 − q−αv/2

)2 ,
which is the Hamiltonian of the classical Calogero–Moser system (2.8).

Remark 4.16. In the theory of integrable systems, the Calogero–Moser system is traditionally
studied via Lax matrices. In our case, a Lax matrix L is a matrix over O(T∨

reg × t)[ℏ] such that
the Hamiltonian equation leads to

L̇ = [L,M ]

for some matrix M . This provides a number of conserved quantities tr(Lk) for k > 0. Here
we compare our matrix Y (λ) with several constructions of Lax matrices of the trigonometric
Calogero–Moser system in the literature.

(1) When G is simply-laced, our matrix Y (θ) recovers the “root” Lax matrix given by
Bordner, Corrigan, and Sasaki [BCS98], where θ denotes the highest root. Note that
in this case, Wθ coincides with the entire root system R, which is the index set of the
matrix therein.



18 CHANGZHENG LI, CHANGJIAN SU, AND RUI XIONG

(2) When G is of classical type, Olshanetsky and Perelomov [OP81, Proposition 12.1] pro-
vided a construction of Lax matrices by using matrices of order 2n+ 1 (see also [DP98,
Theorem 3]). While the matrices we get are of order 2n, with respect to the fundamental
weight e1, see Section 5.

5. Computation for Classical Types

In this section, we compute QH∗
T(T

∗B) for groups G of classical types.

5.1. Type An−1. Recall that G = SL(n,C) in type An−1. While for the convenience of our

computation, we prefer to use GL-notations. Let T̂ be the subgroup of diagonal matrices of
Ĝ := GL(n,C) and t̂ be its Lie algebra. We denote Ĝ = Ĝ×C∗ and T̂ = T̂ ×C∗. By carefully
examining the proof, all the argument in this paper works for GL with minor modification
after replacing t by t̂ in all the arguments.

Let us denote ei ∈ X∗(T̂ ) the projection of the i-th diagonal entry. Thus

X∗(T̂ ) = Ze1 ⊕ · · · ⊕ Zen.

Denote by {e∨j } the dual basis of {ei}. The simple coroots are given by

α∨
i = e∨i − e∨i+1 (i = 1, . . . , n− 1).

We denote qi = qe
v
i . Note that qi/qj = qe

v
i−evj ∈ Eff(B) for i < j. Following the notation from

classical Schubert calculus (e.g. [AF24]), we denote

xi = D−ei , ti = −ei.

We denote also

χi = ∆−ei = xi + ℏ
∑
a<i

qa/qi
1− qa/qi

− ℏ
∑
i<b

qi/qb
1− qi/qb

.

By direct computation with respect to the ordered set W−e1 = {id, s1, . . . , sn−1 · · · s1}, we have

M(χ) := Θ(−e1) =



χ1
ℏ

1−q1/q2
ℏ

1−q1/q3
· · · ℏ

1−q1/qn
ℏ

1−q2/q1
χ2

ℏ
1−q2/q3

· · · ℏ
1−q2/qn

ℏ
1−q3/q1

ℏ
1−q3/q2

χ3 · · · ℏ
1−q3/qn

...
...

...
. . .

...

ℏ
1−qn/q1

ℏ
1−qn/q2

ℏ
1−qn/q3

· · · χn


. (5.1)

From the proof of Proposition 4.11, we have the following identity over A

Σ(−e1)
−1 ∗M(χ) ∗ Σ(−e1) = Ξ(−e1) = diag(t1, . . . , tn).

Let y be an indeterminate. We thus have

det

(
y1n +M(χ)

)
=

n∏
i=1

(y + ti).

Expand the characteristic polynomial

det

(
y1n +M(χ)

)
= yn + E1(χ)y

n−1 + · · ·+ En−1(χ)y + En(χ).

Thus the following relation holds in QH∗
T̂
(T ∗B),

Ek(χ) = ek(t)
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where ek is the k-th elementary symmetric polynomial. Since the algebra of W -invariant
polynomials is generated by the k-th elementary symmetric polynomials, by Proposition 4.12,
we can conclude the following presentation of quantum cohomology.

Theorem 5.1. For type An−1, we have

QH∗
T̂(T

∗B) =
O(T∨

reg)[ℏ, x1, . . . , xn, t1, . . . , tn]
⟨Ek(χ)− ek(t), k = 1, . . . , n⟩

. (5.2)

Consequently, since T is cut from T̂ by the relation e1 + · · ·+ en = 0, we can conclude that

QH∗
T(T

∗B) = QH∗
T̂(T

∗B)/ ⟨e1(t)⟩ .

Next, we will give a combinatorial formula for Ek(χ). Let K be a subset of {1, . . . , n} of
order k. A matching of K is a map π : K → K with π2 = id, i.e. an involution over K. A
matching π is called perfect, if the involution π has no fixed points. Let us denote

J(π) =
∏

π(i)=i

χi and V (π) =
∏

π(i)=j>i

ℏ2qiqj
(qi − qj)2

.

Note that
qiqj

(qi−qj)2
=

qi/qj
(1−qi/qj)2

∈ O(T∨
reg).

Theorem 5.2. For any 1 ≤ k ≤ n,

Ek(χ) =
∑
K

∑
π

J(π)V (π), (5.3)

where the sum over all k-subsets K of {1, . . . , n}, and matchings π of K.

The proof of the above theorem involves some interesting equalities from the viewpoint of
combinatorics. We leave the details in Appendix B.

Example 5.3. For n = 3,

E1(χ) = χ1 + χ2 + χ3

E2(χ) = χ1χ2 + χ1χ3 + χ2χ3 +
ℏ2q1q2

(q1 − q2)2
+

ℏ2q1q3
(q1 − q3)2

+
ℏ2q2q3

(q2 − q3)2

E3(χ) = χ1χ2χ3 + χ3
ℏ2q1q2

(q1 − q2)2
+ χ2

ℏ2q1q3
(q1 − q3)2

+ χ1
ℏ2q2q3

(q2 − q3)2
.

We can illustrate each term above by drawing the matching as follows

1s 2s 3s
χ1

1s 2s 3s
χ2

1s 2s 3s
χ3

1s 2s 3s
χ1χ2

1s 2s 3s
χ1χ3

1s 2s 3s
χ2χ3

1s 2s 3s
ℏ2q1q2

(q1−q2)2

1s 2s 3s
ℏ2q1q3

(q1−q3)2

1s 2s 3s
ℏ2q2q3

(q2−q3)2

1s 2s 3s
χ1χ2χ3

1s 2s 3s
χ3

ℏ2q1q2
(q1−q2)2

1s 2s 3s
χ2

ℏ2q1q3
(q1−q3)2

1s 2s 3s
χ1

ℏ2q2q3
(q2−q3)2
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5.2. Type Bn and type Cn. The weight lattice is naturally recognized as

Ze1 ⊕ · · · ⊕ Zen

with the set of simple coroots

α∨
i = e∨i − e∨i+1 (i = 1, . . . , n− 1) α∨

n = pe∨n

where p = 2 for type Bn and p = 1 for type Cn. We denote

qi = qe
v
i , xi = D−ei , χi = ∆−ei , ti = −ei.

With respect to the ordered set

W−e1 =
{
id, s1, . . ., sn···s1, sn-1sn···s1, . . ., s1···sn-1sn···s1

}
,

we have

M(χ) := Θ(−e1) =



χ1 · · · ℏ
1−q1/qn

ℏ
1−q1qn

· · · pℏ
1−qp1

...
. . .

...
...

...
...

ℏ
1−qn/q1

· · · χn
pℏ

1−qpn
· · · ℏ

1−q1qn

ℏ
1−q−1

n q−1
1

· · · pℏ
1−q−p

n
−χn · · · ℏ

1−q1/qn

...
...

...
...

. . .
...

pℏ
1−q−p

1

· · · ℏ
1−q−1

1 q−1
n

ℏ
1−qn/q1

· · · −χ1


. (5.4)

Here in the upper right (resp. lower left) block, the (i, j)-entry is given by ℏ
1−qiqn+1−j

(resp.
ℏ

1−q−1
n+1−iq

−1
j

) when i+ j ̸= n+ 1 and pℏ
1−qpi

(resp. pℏ
1−q−p

j

) otherwise. Similar to the case of type

A, we have

det

(
y12n +M(χ)

)
=

n∏
i=1

(y2 − t2i ).

Expand the characteristic polynomial

det

(
y12n +M(χ)

)
= y2n + E1(χ)y

2n−1 + · · ·+ E2n−1(χ)y + E2n(χ).

Thus for each k ∈ {1, . . . , n}, E2k−1(χ) = 0, and the following relation holds in QH∗
T(T

∗B),

E2k(χ) = (−1)kek(t
2).

Since the algebra ofW -invariant polynomial is generated by k-th elementary symmetric polyno-
mials in squares. By Deformation Principle in Proposition 4.12, we can conclude the following
presentation of quantum cohomology.

Theorem 5.4. For G of type Bn or Cn, we have

QH∗
T(T

∗B) =
O(T∨

reg)[ℏ, x1, . . . , xn, t1, . . . , tn]
⟨E2k(χ)− (−1)kek(t2), k = 1, . . . , n⟩

. (5.5)
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5.3. Type Dn. The weight lattice is naturally recognized as{
λ1e1 + · · ·+ λnen

∣∣∣∣λi ∈
1

2
Z, λi − λj ∈ Z.

}
with the set of simple coroots

α∨
i = e∨i − e∨i+1 (i = 1, . . . , n− 1) α∨

n = e∨n−1 + e∨n .

We denote

qi = qe
v
i , xi = D−ei , χi = ∆−ei , ti = −ei.

With respect to the ordered set

W−e1 =
{
id, s1, . . ., sn-1sn-2···s1, snsn-2···s1, sn···s1, sn-2sn···s1, . . ., s1···sn-2sn···s1

}
,

we have

M(χ) := Θ(−e1) =



χ1 · · · ℏ
1−q1/qn

ℏ
1−q1qn

· · · 0

...
. . .

...
...

...
...

ℏ
1−qn/q1

· · · χn 0 · · · ℏ
1−qnq1

ℏ
1−q−1

n q−1
1

· · · 0 −χn · · · ℏ
1−q1/qn

...
...

...
...

. . .
...

0 · · · ℏ
1−q−1

1 q−1
n

ℏ
1−qn/q1

· · · −χ1


. (5.6)

Here in the upper right (resp. lower left) block, the (i, j)-entry is given by ℏ
1−qiqn+1−j

(resp.
ℏ

1−q−1
n+1−iq

−1
j

) when i+ j ̸= n+ 1 and 0 otherwise. Similar to the case of type A, we have

det

(
y12n +M(χ)

)
=

n∏
i=1

(y2 − t2i ).

Expand the characteristic polynomial

det

(
y12n +M(χ)

)
= y2n + E1(χ)y

2n−1 + · · ·+ E2n−1(χ)y + E2n(χ).

Thus for each k ∈ {1, . . . , n}, E2k−1(χ) = 0 and the following relation holds in QH∗
T(T

∗B),

E2k(χ) = (−1)kek(t
2).

For type Dn, the polynomial en(t) is also W -invariant. In particular,

(−1)nE2n(χ) = (−1)n detM(χ) = en(t
2) = en(t)

2.

Consider

A(χ) =


χ1

ℏ(1−q1)(1+q2)
(1−q1/q2)(1−q1q2)

· · · ℏ(1−q1)(1+qn)
(1−q1/qn)(1−q1qn)

ℏ(1−q2)(1+q1)
(1−q2/q1)(1−q1q2)

χ2 · · · ℏ(1−q2)(1+qn)
(1−q2/qn)(1−q2qn)

...
...

. . .
...

ℏ(1−qn)(1+q1)
(1−qn/q1)(1−q1qn)

ℏ(1−qn)(1+q2)
(1−qn/q2)(1−q2qn)

· · · χn

 . (5.7)

Lemma 5.5. We have

detM(χ) = detA(χ) · detA(−χ).
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Proof. Denote

L =



1 −q−1
1. . .

...

1 −q−1
n

−q1 −1
. . .

...

−qn −1

 , R =


1 q−1

1. . .
. . .

1 q−1
n

qn −1
...

...
q1 −1

 .

By direct computation, we have

1

2
LM(χ)R =

[
A(χ)

A(−χ)t

]
.

Note that

1

2
RL =



−q−1
1...

−q−1
n

qn
...

q1


whose determinant is 1. As a result, we get the assertion. □

Consider the expansion of

detA(χ) =
∑
σ∈Sn

(−1)ℓ(σ)mσ, mσ = A(χ)1σ(1) · · ·A(χ)nσ(n).

Lemma 5.6. We have

detA(χ) =
∑
σ

(−1)ℓ(σ)mσ

with σ going through permutations whose nontrivial cycles all have even lengths.

Proof. If σ is a permutation having a non-trivial odd cycle, we define σ′ by inverting the
unique odd cycle of σ which contains the smallest index. Since the correspondence σ 7→ σ′ is
an involution, it suffices to show

mσ +mσ′ = 0.

We can assume without loss of generality that the odd cycle is (1 · · · k) for odd k. Note that

A(χ)12A(χ)23 · · ·A(χ)k1 =
∏
i

ℏ(1− qi)(1 + qi+1)

(1− qi/qi+1)(1− qiqi+1)

=
∏
i

ℏ(1− q2i )qi
(qi+1 − qi)(1− qiqi+1)

= (−1)kA(χ)1kA(χ)21 · · ·A(χ)k,k−1.

where the indices are understood as elements of Z/kZ. So we can deduce mσ +mσ′ = 0. □

In particular, we have

detA(χ) = det
(
−A(−χ)

)
= (−1)n detA(−χ).

Combining Lemma 5.5, we have(
detA(χ)

)2
= (−1)n det

(
M(χ)

)
= en(t)

2.
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Note that en(t) ∈ H∗
G(pt) and we can view detA(χ) an element of QH∗

G(T
∗B), see Remark

4.3. Since QH∗
G(T

∗B) is a domain by Proposition 2.2 (3), we have detA(χ) = ±en(t). As
detA(χ) = en(x) mod ℏ, the only possibility is detA(χ) = en(t).

Theorem 5.7. For G of type Dn, we have

QH∗
T(T

∗B) =
O(T∨

reg)[ℏ, x1, . . . , xn, t1, . . . , tn]〈
E2k(χ)− (−1)kek(t

2), k = 1, . . . , n− 1
detA(χ)− en(t)

〉 . (5.8)

Appendix A. Toda limit

The equivariant quantum cohomology of B can be obtained from that of T ∗B, by taking a
Toda limit as follows.

Definition A.1. The Toda limit of a class γ ∈ QH∗
G(T

∗B) is defined to be

limtd γ = lim
ℏ→∞

γ(ℏ, ℏ−2ρq) ∈ QH∗
G(B),

where γ(ℏ, ℏ−2ρq) denotes the class obtained from γ by the substitution

qβ 7→ ℏ−⟨2ρ,β⟩qβ.

When γ ∈ QH∗
T(T

∗B), γ ∈ QH∗
T (B) is also called the Toda limit.

Proposition A.2 ([BMO11, Proposition 8.1]). For any classes γ1, γ2 ∈ QH∗
G(T

∗B) whose
Toda limits both converge, we have(

limtd γ1
)
∗
(
limtd γ2

)
= limtd(γ1 ∗ γ2)

These also hold if we replace G by T.

Remark A.3. Proposition 8.1 of [BMO11] only stated for the case when γ1 is a divisor. Never-
theless, its proof therein works in general. This also follows from the fact that QH∗

G(T
∗B) is

generated by divisors.

By taking the Toda limit, we can obtain a ring presentation of the equivariant cohomology
QH∗

T (B) from QH∗
T(T

∗B). Below we discuss such presentation for B of classical type, and
compare them with the nice description by using integrals of motions of the Toda lattice for
the Langlands-dual Lie group by Kim [Kim99].

Type An−1. Note ρ = (n− 1)e1 + (n− 2)e2 + · · ·+ en−1. We conjugate (5.1) by

diag
(
1,−ℏ, . . . , (−ℏ)n−1

)
.

Note that

limtd (−1)i−jℏ1+i−j

1− qi/qj
= lim

ℏ→∞

(−1)j−iℏ1+i−j

1− ℏ2(i−j)qi/qj
=


qj/qj+1, i = j + 1,

−1, j = i+ 1,

0 otherwise.

After taking the Toda limit, we obtain the following matrix

x1 −1 0 · · · 0

q1/q2 x2 −1 · · · 0

0 q2/q3 x3 · · · 0

...
...

...
. . .

...

0 0 0 · · · xn


. (A.1)
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By Proposition A.2, this covers the representation of QH∗
T (B) of type An−1 in [Kim99].

Type Bn. Note ρ = (n− 1
2)e1 + (n− 3

2)e2 + · · ·+ 1
2en. We conjugate (5.4) by

diag
(
ℏ−n+1/2, . . . , ℏ−1/2, ℏ1/2, . . . , ℏn−1/2

)
.

By taking the Toda limit entry-wise, we obtain the following matrix

x1 1

−q1/q2 x2
. . .

. . .
. . . 1

−qn−1/qn xn 2

−2q2n −xn 1

−qn/qn−1
. . .

. . .

. . . −x2 1
−q1/q2 −x1


. (A.2)

We need the following lemma.

Lemma A.4 ([Mui60]). The determinant of a tridiagonal matrix is given by

det



x1 a1 0 · · · 0

b1 x2 a2 · · · 0

0 b2 x3 · · · 0

...
...

...
. . .

...

0 0 0 · · · xn


=
∑
σ

( ∏
i=σ(i)

xi
∏

σ(i)=i+1

(−aibi)

)
,

where σ goes over involutions over {1, . . . , n} such that |σ(i)− i| ≤ 1 for any 1 ≤ i ≤ n.

As a corollary, replacing (ai, bi) by (−ai,−bi) for any 1 ≤ i ≤ n does not affect the char-
acteristic polynomial of a tridiagonal matrix. Using this Lemma A.4, by suitable re-assigning
sign for (A.2) and rearranging columns and rows if necessary, we recover the matrix in spn
obtained in [Kim99].

Type Cn. Note ρ = ne1+(n−1)e2+ · · ·+en. We can conjugate via the same diagonal matrix

diag
(
ℏ−n+1/2, . . . , ℏ−1/2, ℏ1/2, . . . , ℏn−1/2

)
.

Since the p is different from type B, we obtain the following matrix

M =



x1 1

−q1/q2 x2
. . .

. . .
. . . 1

−qn−1/qn xn 1

−qn −xn 1

−qn−1 −qn/qn−1
. . .

. . .

...
. . . −x2 1

−q1 −q1/q2 −x1


. (A.3)
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Lemma A.5. The polynomial y det(y12n+M) is the characteristic polynomial of the following
matrix 

x1 −1

q1/q2 x2
. . .

. . .
. . . −1

qn−1/qn xn −1/2

qn 0 1/2

−qn −xn 1

−qn/qn−1
. . .

. . .

. . . −x2 1
−q1/q2−x1



. (A.4)

Proof. We just give a sketch here. By expanding the determinant, the characteristic polynomial
det(y12n +M) equals

q1 + q2 det
[y+x1

y−x1

]
+ q3 det

 y+x1

−q1/q2

1
y+x2

y−x2

−q1/q2

1
y−x1

+ · · ·

Let us write yqi as

1

2
(qi/qi+1) · · · (qn−1/qn)qn(y + xi) +

1

2
(qi/qi+1) · · · (qn−1/qn)qn(y − xi).

By Lemma A.4 and tedious computation, we can conclude that y det(y12n+M) coincides with
the characteristic polynomial of the matrix (A.4). □

By suitable re-assigning sign for (A.4) and rearranging columns and rows if necessary, we
recover the matrix in so2n+1 obtained in [Kim99].

Type Dn. Note ρ = (n− 1)e1 +(n− 2)e2 + · · ·+ en−1. We can conjugate the diagonal matrix

diag
(
ℏ−n+1, . . . ,−ℏ−1, 1, 1, ℏ, . . . , ℏn−1

)
.

We obtain the following matrix

x1 1

−q1/q2 x2
. . .

. . .
. . . 1 1

−qn−1/qn xn 1

−qn−1qn −xn 1

−qn−1qn −qn/qn−1
. . .

. . .

. . . −x2 1
−q1/q2 −x1


. (A.5)
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By expanding determinant directly, it is not hard to show that it has the same characteristic
polynomial as that of

x1 −1

q1/q2 x2
. . .

. . .
. . . −1 −1

qn−1/qn xn 1

qn−1qn −xn 1

−qn−1qn −qn/qn−1
. . .

. . .

. . . −x2 1
−q1/q2 −x1


. (A.6)

which is the matrix for so2n in [Kim99].

Appendix B. Proof of Theorem 5.2

For type An−1, the Weyl group W is given by the symmetric group Sn.

Lemma B.1. For n ≥ 2, we have∑
σ∈Sn
σ(1)=1

1

tσ(1)−tσ(2)
· · · 1

tσ(n−1)−tσ(n)

1

tσ(n)−tσ(1)
=

{
−1

(t1−t2)2
, n = 2,

0, n > 2.
(B.1)

Proof. This assertion is obvious for n = 2. Now we assume n > 2. It suffices to show∑
σ∈Sn

1

tσ(1) − tσ(2)
· · · 1

tσ(n−1) − tσ(n)

1

tσ(n) − tσ(1)
= 0 (B.2)

for n > 2. In fact, each term of the sum (B.2) is invariant under the action of the cycle
(12 · · ·n), so it implies (B.1). Following the idea of [FN16], we consider the following class in
H∗

T(B),

γ = −
∏
i<j

j−i ̸=1,n−1

(xi − xj),

where we recall xi = D−ei and ti = −ei. By Atyiah–Bott localization theorem [AB84], we have∫
B

γ =
∑
σ∈Sn

γ|σ∏
i<j(tσ(i) − tσ(j))

∈ H∗
T(pt)

which is exactly the left-hand side of (B.2). But degC γ = n(n−1)
2 − n < dimB, thus

∫
B
γ =

0. □

Lemma B.2. We have

det



0 1
t1−t2

1
t1−t3

· · · 1
t1−tn

1
t2−t1

0 1
t2−t3

· · · 1
t2−tn

1
t3−t1

1
t3−t2

0 · · · 1
t3−tn

...
...

...
. . .

...

1
tn−t1

1
tn−t2

1
tn−t3

· · · 0


=
∑
π

∏
π(i)=j>i

1

(ti − tj)2
(B.3)

where the sum is over all perfect matchings π of {1, . . . , n}.



AUTOMORPHISM OF QH∗
T(T

∗B) AND APPLICATIONS 27

Proof. Let us consider the expansion of the above determinant∑
σ∈Sn

(−1)ℓ(σ)mσ.

Firstly since the diagonal entries vanish, we have mσ = 0 if σ has a fixed point. Notice that
the right-hand side of (B.3) equals the sum over permutations σ such that σ2 = id.

For any permutation σ such that σ2 ̸= id, the cycle decomposition of σ must have a cycle of
length > 2. Let ησ be the cycle of σ of length > 2 containing the smallest index, and denote
by Aσ the set of indices of ησ. Let [σ] be the set of permutations σ′ such that Aσ = Aσ′ and
σ(i) = σ′(i) for all i /∈ Aσ. In other words, σ′ ∈ [σ] is obtained by a permutation of indices of
ησ of σ. By Lemma B.1 above, ∑

σ′∈[σ]

mσ′ = 0

Note that all permutations σ′ ∈ [σ] have the same sign. The proof is complete. □

Lemma B.3. Theorem 5.2 is true for k = n, i.e.

det


χ1

ℏ
1−q1/q2

· · · ℏ
1−q1/qn

ℏ
1−q2/q1

χ2 · · · ℏ
1−q2/qn

...
...

. . .
...

ℏ
1−qn/q1

ℏ
1−qn/q2

· · · χn

 =
∑
π

J(π)V (π),

with the sum over all matchings π over {1, . . . , n}.

Proof. By the expansion in polynomials in χi’s, the determinant is equal to

∑
A

χa1 · · ·χas det


0 ℏ

1−qb1/qb2
· · · ℏ

1−qb1/qbt
ℏ

1−qb2/qb1
0 · · · ℏ

1−qb2/qbt
...

...
. . .

...

ℏ
1−qbd/qb1

ℏ
1−qbd/qb2

· · · 0


where the sum goes over all subsets A = {a1, . . . , as} of {1, . . . , n} with complement {b1 <
· · · < bt}. Note that by Lemma B.2

det


0 ℏ

1−qb1/qb2
· · · ℏ

1−qb1/qbt
ℏ

1−qb2/qb1
0 · · · ℏ

1−qb2/qbt
...

...
. . .

...

ℏ
1−qbt/qb1

ℏ
1−qbt/qb2

· · · 0



= ℏtqb1 · · · qbt det


0 1

qb2−qb1
· · · 1

qbt−qb1
1

qb1−qb2
0 · · · 1

qbt−qb2
...

...
. . .

...

1
qb1−qbt

1
qb2−qbt

· · · 0

 =
∑
π

V (π),

where the sum is over perfect matchings π over {b1 < . . . < bt}. We can extend π to a (not
necessarily perfect) matching over {1, . . . , n} by setting π(ai) = ai for i = 1, . . . , s. Thus the
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determinant equals ∑
J(π)V (π)

with sum over all matchings of π over {1, . . . , n}. □

Proof of Theorem 5.2. Similarly to the proof of Lemma B.3, the coefficient of yn−k in det
(
y1n+

M(χ)
)
is

∑
K

det


χc1

ℏ
1−qc1/qc2

· · · ℏ
1−qc1/qck

ℏ
1−qc2/qc1

χc2 · · · ℏ
1−qc2/qck

...
...

. . .
...

ℏ
1−qck/qc1

ℏ
1−qck/qc2

· · · χck


where the sum goes over all subsets K = {c1 < · · · < ck} ⊂ {1, . . . , n} of order k. By Lemma
B.3, it is equal to ∑

K

∑
π

J(π)V (π)

with K a k-subset of {1, . . . , n} and π going through the matchings of K. This finishes the
proof. □
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[GK95] Alexander Givental and Bumsig Kim. Quantum cohomology of flag manifolds and Toda lattices.
Comm. Math. Phys., 168(3):609–641, 1995.

[Hec97] G. J. Heckman. Dunkl operators. Number 245, pages Exp. No. 828, 4, 223–246. 1997. Séminaire
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