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Abstract. We propose to study the quantum Schubert calculus for Schubert varieties,
and investigate the smooth Schubert divisors X of the complete flag variety F`n. We
provide a Borel-type ring presentation of the quantum cohomology of X. We derive
the quantum Chevalley formula for X by geometric arguments. We also show that the
quantum Schubert polynomials for X are the same as that for F`n introduced by Fomin,
Gelfand and Postnikov.

1. Introduction

Schubert problems, which count the number of geometric objects with given geometric
constraints, are fundamental to enumerative geometry. Here the central objects are flag
varieties G/P together with their Schubert subvarieties. The classical Schubert calculus,
in modern language, is about the study of the integral cohomology ring H∗(G/P,Z). The
Schubert classes σu of the Schubert varieties form an additive basis of H∗(G/P,Z). A
profound understanding of the cohomology ring mainly consists of the following three parts:

(1) A ring representation of the form H∗(G/P,Z) = Z[x]/I.
(2) A (manifestly positive) formula of the Schubert constants cwu,v in the cup product

σu ∪ σv =
∑

w c
w
u,vσ

w.
(3) A Schubert polynomial Su(x) ∈ Z[x] that represents the Schubert class σu in the

aforementioned ring presentation Z[x]/I.

We refer to the very nice article [BGP25] and the references therein for the progress of
classical Schubert calculus with an emphasis on the case G = SL(n,C). With the Gromov-
Witten theory introduced in 1990s, the classical cohomology H∗(G/P,Z) can be deformed
to the integral (small) quantum cohomology ring QH∗(G/P,Z) = (H∗(G/P,Z) ⊗ Z[q], ?),
by incorporating 3-pointed, gezus-0 Gromov-Witten invariants. In particular, we can write

σu ? σv =
∑

w,dN
w,d
u,v σwqd, where Nw,0

u,v = cwu,v. There have been extensive studies of

the quantum Schubert calculus, namely of the quantum versions of the above (1)-(3) for
QH∗(G/P,Z) (see e.g. the survey [LL17] and the references therein).

All the Schubert varieties, including flag varieties as special cases, have CW complex
structures by Schubert cells. In return, the integral cohomology of a Schubert variety Xw

inside G/P is torsion free, and has an additive basis of Schubert classes indexed by the
Weyl group elements u satisfying u ≤ w with respect to the Bruhat order.

Question 1.1. What is the (extended) Schubert calculus for Schubert varieties?

The natural inclusion ι : Xw ↪→ G/P induces a surjective ring homomorphism ι∗ :
H∗(G/P,Z) → H∗(Xw,Z) with kernel Iw =

∑
u6≤w σ

u. Hence, the (extended) classical
1
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Schubert calculus for Schubert varieties is trivial in the sense that all points (1)-(3) can be
reduced to that for the flag varieties, with the price that the ring presentation H∗(Xw,Z) =
H∗(G/P,Z)/Iw being not good enough. We refer to [ALP92,GR02,DMR07,RWY11,DY24]
for the study of the ring presentation of the cohomology of Schubert varieties.

The (extended) quantum Schubert calculus for Schubert varieties is highly nontrivial.
First of all, we have to restrict to the smooth ones, since there was no Gromov-Witten the-
ory for singular (Schubert) varieties yet. To our knowledge, there have been very few pio-
neer studies [Pec13,MS19,HKLS25] in different context. The odd symplectic Grassmannian
IG(k, 2n+ 1) is a smooth Schubert variety of the symplectic Grassmannian IG(k, 2n+ 2),
a flag variety G/P with G = Sp(2n,C). In [Pec13], Pech studied the case k = 2, which
happens to be a general hyperplane section of the complex Grassmannian Gr(2, 2n + 1).
She did a relatively complete quantum Schubert calculus for a non-homogeneous Schubert
variety for the first time, by providing a ring presentation, the quantum Pieri formula (a
partial formula for the quantum version of point (2), see also [GLLX25]), and the quan-
tum Giambelli formula (i.e. the quantum version of (3)). In [MS19], Mihalcea and Shifler
provided the (equivariant) quantum Chevally formula for IG(k, 2n+ 1) by using the curve
neighborhood technique [BM15]. In [HKLS25], Hu, Ke, Li and Song provided a ring pre-
sentation for the quantum cohomology of the blowup of Gr(2, n) along Gr(2, n− 1) for the
purpose of studying mirror symmetry, which happens to be a Schubert divisor in a two-step
flag variety. The special case when n = 3 is the blowup of P2 at point, which has been
well studied much earlier. Despite being a very natural extension from the viewpoint of
Schubert calculus, the quantum Schubert calculus for smooth non-homogeneous varieties is
still largely uncharted territory, with many aspects awaiting exploration.

The complete flag variety F`n := {V1 ≤ · · · ≤ Vn−1 ≤ Cn | dimVi = i,∀1 ≤ i < n} is the
quotient of G = SL(n,C) by the Borel subgroup of upper tiangular matrices in G. Denote
by F• the standard complete flag. Each permutation w ∈ Sn labels a Schubert variety Xw

of dimension `(w) defined by ranking condition of the form Xw = {V• | dim(Vi ∩ Fj) ≥
m(i, j, w),∀i, j}. Note that the permutation w0 = n · · · 21 in one-line notation is the longest
element in Sn, and si := (i, i + 1), i < n, denote the simple transpositions. In this paper,
we focus on the Schubert divisor

X := Xw0sn−1 = {V• | F1 ≤ Vn−1}.
Note X ∼= Xw0s1 , while all the other Schubert divisors Xw0si , 2 ≤ i ≤ n− 2, are singular.

Denote the following n× n matrices

x1 q1

−1 x2 q2

. . .
. . .

. . .

−1 xn−2 qn−2

−1 xn−1 qn−1

−1 xn





x1 q1

−1 x2 q2

. . .
. . .

. . .

−1 xn−2 qn−2 −qn−1qn−2

−1 xn−1 −qn−1xn−1

−1 xn


as MF`n and MXw0sn−1

respectively. Write

(1.1) det(In + λMF`n) =
n∑
i=0

Eni λ
i, det(In + λMXw0sn−1

) =
n∑
i=0

Êni λ
i.
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The coefficients Eni , Êni may be viewed as quantizations of the i-th elementary symmetric

polynomial eni (x1, · · · , xn). Moreover, we notice Ên1 = En1 and Ênn = (xn−qn−1)En−1
n−1 , while

the difference between Êni and Eni is a bit involved for 1 < i < n. As shown by Givental
and Kim [GK95], there is a canonical ring isomorphism

Φq : QH∗(F`n,Z) −→ Z[x1, · · · , xn, q1, · · · , qn−1]/(En1 , · · · , Enn).

Its classical limit at q = 0 gives Borel’s ring isomorphism Φ : H∗(F`n,Z)
∼→ Z[x1,··· ,xn]

(en1 ,··· ,enn)

[Bo53], where eni = eni (x) denotes the i-th elementary symmetric polynomial in variables
x1, · · · , xn. As the first main result of this paper, we obtain a similar quantum ring pre-
sentation for X.

Theorem 1.2 (Borel-type ring presentation). There is a canonical ring isomorphism

Ψq : QH∗(X,Z) −→ Z[x1, · · · , xn, q1, · · · , qn−1]
/(
Ên1 , · · · , Ênn−1, E

n−1
n−1

)
.

In particular, we obtain the canonical ring isomorphism Ψ : H∗(X,Z)
∼→ Z[x1,··· ,xn]

(en1 ,··· ,enn−1,e
n−1
n−1)

.

in [GR02, RWY11] by taking the classical limit at q = 0. By “canonical” above, we
mean that xi represents the first Chern class of a specific tautological line bundle (see
Equation (2.8) for F`n and Equation (2.10) for X).

For any u ∈ Sn, the Schubert class σu in H2`(u)(F`n,Z) is given by the Poincaré dual of
the homology class [Xw0u] in H2`(w0)−2`(u)(F`n,Z). The pullback Schubert classes {ξu :=
ι∗(σu)}u≤w0sn−1 form an additive basis of H∗(X,Z), and the divisor classes ξsi ’s generate
QH∗(X,Z) as a Z[q]-algebra. Whenever referring to a transposition tij = (i, j), we always
assume i < j. We say u lk utij (resp. u lq

k utij) in the (quantum) k-Bruhat order, if
both i ≤ k < j and `(utij) = `(u) + 1 (resp. `(utij) = `(u) − `(tij)) hold. As the second
main result of this paper, we obtain the following quantum Monk-Chevalley formula, in
analogy with the quantum Monk’s formula for QH∗(F`n,Z) [FGP97] or more generally the
quantum Chevalley formula for QH∗(G/P,Z) [FW04]. It is a special case of the quantum
version of point (2) for X but sufficient to determine the all the structure coefficients in
principle.

Theorem 1.3 (Quantum Monk-Chevalley formula). Let 1 ≤ k ≤ n − 1 and u ∈ Sn with
u ≤ w0sn−1. In QH∗(X,Z), we have

ξsk ? ξu =
∑

ξutab +
∑

ξutabqa · · · qb−1 +
∑

ξwqa · · · qn−1 − δk,n−1ξ
uqn−1,

where the first sum is over ulk utab ≤ w0sn−1, the second sum is over ulq
k utab with b < n,

and the third sum is over (w, a) that satisfies wtan lq
k w and uln−1 wtan ∈ Sn.

By Remark 4.12, the permutation w in the above theorem does satisfy w ≤ w0sn−1, so does
for utab in the second sum.

Equivalently, the quantum Monk-Chevalley formula for X can be read off directly from
that for F`n: the first two sums are the cut-off of the quantum product σsk ? σu, and the
third sum is about the quantum terms involving qn−1 and appearing in σsk ? (σu ∪ σsn−1).
We emphasize that the minus sign in the fourth part is necessary and has a geometric
explanation, which gives rise to a key ingredient in our geometric arguments. Intuitively, a
smooth curve with two marked points of degree d with dn−1 = 1 lies on X if and only if the
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two marked points are both on X. For stable maps, an additional correction term must be
taken into consideration, due to the presence of nodal curves. The fourth part may or may
not be canceled by the third part.

Example 1.4. For the Schubert divisor Xw0s3 of F`4, we have

ξs3s2 ? ξs3 = ξs3s2s3 + 0 + (q3ξ
s3s2 + q2q3)− q3ξ

s3s2 = ξs3s2s3 + q2q3;

ξs1s3 ? ξs3 = ξs2s1s3 + 0 + (q3ξ
s1s2 + q3ξ

s2s1)− q3ξ
s1s3 .

To show the vanishing of Gromov-Witten invariants of higher degrees, we mainly use the
curve neighborhood technique developed by Buch and Mihalcea [BM15], with a special
treatment by more involved geometric arguments for degrees of the form (0, · · · , 0, 1, · · · , 1, 2).

Remark 1.5. We anticipate that our approach to proving Theorem 1.3 could be applied to
more general cases and in the equivariant quantum cohomology setting. For instance, we
can already obtain the equivariant quantum Monk-Chevalley formula for X immediately.
Indeed, our arguments are purely geometrical and all the involved morphisms are torus-
equivariant. As a direct consequence of our proof, Theorem 4.2 holds equivariantly by simply

treating Nw,d
v,u as equivariant quantum Schubert structure constants for F`n. Therefore, the

equivariant quantum extension of Theorem 1.3 is simply obtained by adding into it the single
term (ωk − u(ωk))ξ

u , where ωi’s denote the fundamental weights.

The Schubert polynimals Sw ∈ Z[x1, · · · , xn], w ∈ Sn, were introduced by Lascoux and
Schützenberger [LS82], which satisfy Φ(σw) = [Sw] in Borel’s presentation of H∗(F`n,Z).
Moreover, every Sw admits a unique linear expansion Sw =

∑
αi1...in−1e

1
i1
e2
i2
· · · en−1

in−1
.

In [FGP97], Fomin, Gelfand and Postnikov introduced the quantum Schubert polynomial

Sq
w =

∑
αi1...in−1E

1
i1E

2
i2 · · ·E

n−1
in−1

.

They showed that Φq(σ
w) = [Sq

w] under the aforementioned canonical ring isomorphism Φq

for QH∗(F`n,Z). As the third main result of this paper, we obtain the following. Recall
the ring isomorphism Ψq in Theorem 1.2.

Theorem 1.6 (Quantum Schubert polynomials). For any w ≤ w0sn−1, we have

Ψq(ξ
w) = [Sq

w].

It is the key ingredient in our proof that we use a transition equation (in Proposition 5.3)
for quantum Schubert polynomials. This says that quantum Schubert polynomials can be
completely determined by a very small part of the quantum Monk-Chevalley formula. This
powerful idea was noticed and applied early in [LOTRZ25, Theorem 4 and Remark 3.15]
in the study of quantum double Schubert polynomials for F`n.

On the one hand, even though the quantum (resp. classical) Schubert polynomial of the
class ξw for X is the same as that for the class σw for F`n, the situation for the quantum
cohomology is much more non-trivial. As we can already see from 1.3, the expansion
of Sq

iS
q
u for X is not a cut-off from that for F`n. Consequently, the naive linear map

σu 7→ ι∗(σu) = ξu cannot give rise to a ring homomorphism QH∗(F`n,Z) → QH∗(X,Z),
in contract to the classical situation.

On the other hand, we do be able to obtain a ring homomorphism as follows.
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Theorem 1.7 (Quantum Lefschetz hyperplane principle). There is a ring homomorphism
ι∗q : QH∗(F`n,Z)→ QH∗(X,Z), defined by σsi 7→ ξsi and qi 7→ qi for 1 ≤ i ≤ n− 2, and

σsn−1 7→ ξsn−1 + qn−1, qn−1 7→ qn−1ξ
sn−1 + q2

n−1.

The above theorem can be viewed as a precise example of the new formulation of quantum
Lefschetz hyperplane principle by Galkin and Iritani [GI], see also [GLLX25, Proposition
1.10]. It exhibits a surprising functoriality of quantum cohomology with respect to the
inclusion ι : X ↪→ F`n of the hypersurface X, which is lacking in general.

The quantum Schubert calculus for Schubert varieties is also of great importance beyond
the scope of enumerative geometry. A profound insight, due to Dale Peterson [Pet97], states
that the spectrum of the quantum cohomology ring QH∗(G/P ) = QH∗(G/P,Z) ⊗Z C for
all P can be assembled into the Peterson variety in the Langlands dual complete flag
variety (see [Rie03, Chow22]). Moreover, each Peterson strata corresponds to QH∗(G/P )
for some P , and arises from the critical points of a holomorphic function defined on an
open Richardson variety by Rietsch [Rie08]. In the forthcoming work [LRY], Li, Rietsch
and Yang define a holomorphic function for any (possibly singular) Schubert variety, and
propose an extended Peterson program, generalizing the framework for flag varieties. Our
current paper was strongly motivated by one conjecture in the extended Peterson program
that the quantum cohomology ring of a smooth Fano Schubert variety should be isomorphic
to the Jacobi ring of the corresponding holomorphic function defined therein. In fact, the
ring presentation in 1.2 was first predicted in [LRY] in the wider Peterson program initiated
there, making our proof a bit easier for having known the expectation in advance. Our 1.2
will further be applied there, serving as the first important supporting evidence to Peterson
program. In conclusion, we would raise our arms and shout:

It is the right time to develop quantum Schubert calculus for smooth Schubert varieties
from various perspectives!

This paper is organized as follows. In Section 2, we introduce necessary background.
In Section 3, we derive the ring presentation of QH∗(X,Z) by investigating the quantum
differential equations. In Section 4, we provide the quantum Monk-Chevalley formula, by
investigating the moduli space of stable maps of certain degrees and using curve neigh-
borhood technique for higher degrees. Finally in Section 5, we show that the quantum
Schubert polynomials for X are the same as that for F`n, by using induction based on a
transition equation for quantum Schubert polynomials.

Acknowledgements. The authors would like to thank Ki Fung Chan, Neil. J.Y. Fan,
Hua-Zhong Ke, Tuong Le, Leonardo C. Mihalcea and Konstanze Rietsch and for helpful
discussions. C. Li is supported by the National Key R & D Program of China No. 2023Y-
FA1009801 and by NSFC Grant 12271529.

2. Notations

We review some background, and refer to [BB05,GR02,CK99] for more details.
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2.1. Combinatorics of Sn. The symmetric group Sn is generated by simple reflections
si := (i, i+1), 1 ≤ i < n. Every element w ∈ Sn can be denoted as w(1) · · ·w(n) in one-line
notation, and is of length `(w) that counts the inversion set {(i, j) | i < j, w(i) > w(j)}.
The (unique) longest element in Sn is given by w0 := n · · · 21. For any permutation w, we
have `(w0w) = `(w0)− `(w).

Whenever referring to a transposition tab := (a, b), we always assume a < b in this paper.
Let u,w ∈ Sn. We say ulw (i.e. u is covered by w), if there exists tab, such that w = utab
and `(w) = `(u) + 1. Then u ≤ w in the Bruhat order, if u can be transformed into w by a
series of transpositions tij that each increase the inversion number by 1. Note that u ≤ w
holds if and only if for any 1 ≤ j ≤ n, the increasingly sorted list of u(1), · · · , u(j) is less
than or equal to that of w(1), · · · , w(j) in the usual partial order. In particular, we have

(2.1) u ≤ w0sn−1 = n · · · 4312 ⇐⇒ u(n) 6= 1.

Note `(tab) = 2b− 2a− 1. The quantum k-Bruhat cover lq is defined by

ulq utab if and only if `(utab) = `(u)− `(tab).

For 1 ≤ k < n, we can further define the (quantum) k-Bruhat cover by

ulk utab if and only if `(utab) = `(u) + 1 and a ≤ k < b;(2.2)

ulq
k utab if and only if `(utab) = `(u)− `(tab) and a ≤ k < b.(2.3)

2.2. Schubert varieties of F`n. Consider the complete flag variety

F`n := {V1 ≤ · · · ≤ Vn−1 ≤ Cn | dimVi = i,∀ 1 ≤ i < n}.

Let F• ∈ F`n be the standard complete flag in Cn. For any permutation w ∈ Sn, we define
the Schubert cell X◦w ⊆ F`n (associated to F•) by the following rank conditions.

X◦w := {V• ∈ F`n| dim(Vp ∩ Fq) = ]{k ∈ Z>0|k ≤ p, w(k) ≤ q},∀ 1 ≤ p, q ≤ n}.

Then X◦w
∼= C`(w), and X◦u ∩X◦w = ∅ for any u 6= w. The Schubert variety Xw is given by

Xw := X◦w = {V• ∈ F`n|dim(Vp ∩ Fq) ≥ ]{k ∈ Z>0|k ≤ p, w(k) ≤ q}, ∀ 1 ≤ p, q ≤ n},

and admits a cell decomposition by Schubert cells (with respect to the Bruhat orders):

Xw =
⊔
u≤w

X◦u.(2.4)

In particular, F`n is the (biggest) Schubert variety Xw0 . The Schubert divisors are given
by Xwsi , 1 ≤ i ≤ n − 1. Throughout this paper, we will focus on the Schubert divisor
Xw0sn−1 , whose defining rank conditions can be reduced to the single one:

(2.5) X := Xw0sn−1 = {V• ∈ F`n|F1 ⊂ Vn−1}.

Let pr : F`n → Gr(n − 1, n) be the natural projection that sends V• to Vn−1. Then the
divisor X can be viewed as the zero locus of a section of the line bundle over F`n,

(2.6) L$n−1 := pr∗OGr(n−1,n)(1).

We notice that Xw0s1
∼= Xw0sn−1 is smooth, isomorphic to an F`n−1-bundle over Pn−2.

while Xw0si ’s are all singular for 1 < i < n− 1.
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2.2.1. Topology of F`n. For w ∈ Sn, denote by σw ∈ H2`(w)(F`n,Z) the Schubert class
defined by the Poincaré dual of the homology class [Xw0w] ∈ H2`(w0w)(F`n,Z). We have

(σw0u, σw) :=

∫
F`n

σw0u ∪ σw = 〈[Xu], σw〉 = δu,w.

Here (·, ·) denotes the Poincaré pairing for F`n, and 〈·, ·〉 (resp. δu,w) denote the Kronecker
pairing (resp. symbol). It follows from Equation (2.4) that H∗(F`n,Z) =

⊕
w∈Sn Zσ

w.
Denote the i-th elementary symmetric polynomial in variables x1, · · · , xn as

(2.7) eni = eni (x1, · · · , xn).

The following result was due to Borel [Bo53].

Proposition 2.1. There is a canonical ring isomorphism

Φ : H∗(F`n,Z) −→ Z[x1, x2. · · · , xn]
/(
en1 , e

n
2 , · · · , enn

)
.

Denote V0 = {0} and Vn = Cn. Let Si be the i-th tautological subbundle of F`n, 0 ≤ i ≤ n,
namely the fiber of Si at a point V• ∈ F`n is given by the vector space Vi. By “canonical”
in the above proposition, we mean

(2.8) Φ−1([xi]) = c1((Si/Si−1)∨) ∈ H2(F`n,Z).

2.2.2. Topology of X. It also follows from the cell decomposition Equation (2.4) that
H∗(X,Z) is torsion free and has an additive basis {PD([Xw])}w≤w0sn−1 . Let {ξw}w≤w0sn−1

denote the dual basis with respect to Poincaré pairing, namely (PD([Xu]), ξw) = 〈[Xu], ξw〉 =
δu,w for any u,w ≤ w0sn−1. Induced from the natural inclusion map ι : X ↪→ F`n, we have
a surjective ring homomorphism

(2.9) ι∗ : H∗(F`n,Z) −→ H∗(X,Z); ι∗(σw) =

{
ξw, if w ≤ w0sn−1,

0, otherwise.

We therefore call ξw’s the pullback Schubert classes. Moreover, the following ring presen-
tation was obtained in [GR02,RWY11].

Proposition 2.2. There is a canonical ring isomorphism

Ψ : H∗(X,Z) −→ Z[x1, x2. · · · , xn]
/(
en1 , e

n
2 , · · · , enn−1, e

n−1
n−1

)
.

Here by “canonical”, we mean

(2.10) Ψ−1([xi]) = c1((ι∗Si/ι∗Si−1)∨) ∈ H2(X,Z).

2.3. Quantum cohomology. To simplify the descriptions, we only review the necessary
notions for Y ∈ {F`n, X}, which is Fano with the first Chern class

(2.11) c1(Y ) =

{
2σs1 + 2σs2 + · · ·+ 2σsn−2 + 2σsn−1 , if Y = F`n,

2ξs1 + 2ξs2 + · · ·+ 2ξsn−2 + ξsn−1 , if Y = X.

(See [LRY25] for a criterion for a factorial Schubert variety of general Lie type being Fano,
as well as a formula of the first Chern class.) Uniformly denote by γw the cohomology class
σw (resp. ξw) labeled by an appropriate permutation w for Y = F`n (resp. X).

Let M0,m(Y, d) denote the moduli space of m-pointed, genus-0 stable maps (f : C →
Y ; pt1, · · · ,ptm) of degree d ∈ H2(Y ;Z). For each i, let evi :M0,m(Y, d) −→ Y denote the
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i-th evaluation map, which sends (f : C → Y ; pt1, · · · ,ptm) to f(pti); let Li denote the i-th
universal cotangent line bundle onM0,m(Y, d). The gravitational Gromov-Witten invariant,
associated to nonnegative integers di and cohomology classes γui ∈ H∗(Y ) = H∗(Y,C), is
defined by

〈τd1γu1 , τd2γu2 , · · · , τdkγ
um〉Y0,m,d :=

∫
[M0,m(Y,d)]vir

m∏
i=1

(c1(Li)di ∪ ev∗i (γui)).

Here [M0,m(Y, d)]vir denotes the virtual fundamental class, which is of expected dimension
dimY +k−3+

∫
d c1(Y ). In particular, Gromov-Witten invariants of degree d are vanishing

unless d belongs to the Mori cone NE(Y ) =
⊕n−1

j=1 Z≥0[Xsj ] ⊂ H2(Y,Z) of effective curve
classes of Y , which we simply denote as d ≥ 0.

Let {γu}u ⊂ H∗(Y ) be the dual basis of {γu}u with respect to the Poincaré pairing.
The (small) quantum cohomology QH∗(Y ) = (H∗(Y )⊗ C[q], ?) is a C[q]-algebra with the
(small) quantum product defined by

γu ? γv =
∑

d∈NE(Y )

∑
w

〈γu, γv, γw〉Y0,3,dγwqd,(2.12)

where qd := qd11 · · · q
dn−1

n−1 for d =
∑n−1

j=1 dj [Xsj ] ∈ NE(Y ). This does happen for Y = F`n,
so does for Y = X as we will see. The quantum variable qj is of degree

(2.13) deg qj =

∫
[Xsj ]

c1(Y ) =

{
1, if Y = X and j = n− 1 both hold,

2, otherwise.

Whenever H∗(Y,Z) ⊗ Z[q] is closed under the quantum multiplication ?, we call it the
integral quantum cohomology, simply denoted as QH∗(Y,Z).

3. A Borel-type ring presentation of QH∗(X)

For Y ∈ {F`n, X}, we denote

H(Y ) := H∗(Y )⊗C C[~][[~−1]][[q1, · · · , qn]].(3.1)

In this section, we will introduce Givental’s J-function JY (t, ~) of Y , viewed as an element
in H(Y ). We then prove the Borel-type ring presentation of QH∗(X) in Theorem 1.2, by
finding quantum differential equations that annihilate JX(t, ~).

At the beginning and the end of this section, we will identify both first Chern classes in
Equation (2.8) and Equation (2.10) as xi by abuse of notation. Then γsj = x1 +x2 + · · ·+xj
for 1 ≤ j ≤ n − 1. Denoting t =

∑n
i=1 tixi ∈ H2(Y ), we view the quantum variables qj as

functions on H2(Y ), by letting qj = e

∫
[Xsj ]

t
= etj−tj+1 . Then it follows from δi,j =

∫
[Xsi ]

γsj

that qd = e
∫
d t = e

∫
d

∑
i ti(γi−γi−1) = e

∫
d

∑
i(ti−ti+1)γi = qd11 · · · q

dn−1

n−1 .
From Proposition 3.3 until Theorem 3.10, we will use ι∗xi for X to distinguish the use

of xi for F`n, in order to avoid confusions. For any f(x, ~) ∈ H(F`n), by f(ι∗x, ~) we
mean the element in H(X) simply obtained from f(x, ~) by replacing all xi with ι∗xi. In
particular, by ι∗t we mean

∑
i tiι
∗xi.
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3.1. Givental’s J-function of X. The (small) quantum connection acts on the trivial
H∗(Y )-bundle over H2(Y )× C∗. Its derivations along the H2(Y )-direction are given by

∇ ∂
∂ti

:=
∂

∂ti
+

1

~
xi?, 1 ≤ i ≤ n,

where ~ is the coordinate of C∗. This quantum connection is flat, with the fundamental
solution L(t, ~) to the quantum differential equation ∇ ∂

∂ti

(L(t, ~)α) = 0 given by

L(t, ~)α := e−
t
~α+

∑
d

∑
w

〈 e−
t
~α

−~− c1(L1)
, γw〉Y0,2,dγwqd.

Here α ∈ H∗(Y ), and we take the expansion 1
−~−c1(L1) =

∑
i=0(−1)i+1~−i−1(c1(L1))i.

Definition 3.1. The Givental’s (small) J-function of Y is defined by

JY (t, ~) := L(t, ~)−1(1) = e
t
~
∑
d

∑
w

〈1, γw
~− c1(L1)

〉Y0,2,d γwqd;

JY (t0, t, ~) := e
t01
~ JY (t, ~).

Here 1 = γid is the identity element in H∗(Y ).

Proposition 3.2 ( [BCK08, Theorem 1]). The Givental’s J-function of F`n is given by

JF`n(t, ~) = e
t
~ (
∑
d≥0

qdJF`nd (x, ~)), where

JF`nd (x, ~) =
∑

∑
j di,j=di

( n−1∏
i=1

∏
1≤j<j′≤i

(−1)
di,j−di,j′

xj − xj′ + (di,j − di,j′ )~
xj − xj′

)
( n−2∏
i=1

∏
1≤j≤i

1≤j′≤i+1

∏0
k=−∞(xj − xj′ + k~)∏di,j−di+1,j

′

k=−∞ (xj − xj′ + k~)

) ∏
1≤j≤n−1

1∏dn−1,j

k=1 (xj + k~)n
.

Here the sum is over nonnegative integers di,j, with 1 ≤ j ≤ i ≤ n− 1.

Proposition 3.3. The Givental’s J-function of X is given by

JX(ι∗t, ~) = e−
qn−1

~ IF`n,X(ι∗t, ~),

where

IF`n,X(t, ~) := e
t
~

(∑
d≥0

qdJF`nd (x, ~)

∫
d σ

sn−1∏
k=1

(−xn + k~)

)

with the contribution from the product
0∏

k=1

read off as multiplication by −xn by convention.
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Proof. Expanding IF`n,X(t, ~) with respect to the variable ~, we obtain

IF`n,X(t, ~) = 1 +
1

~
(qn−11 + t) +O(~−2).

Recall from Equation (2.6) that the smooth Schubert divisor X is realized as the zero locus
of a section of the line bundle L$n−1 over F`n with c1(L$n−1) = σsn−1 = −xn. By using

the quantum Lefschetz theorem [CG07, Corollary 7] with respect to F`n and X1, we obtain

JX(qn−11 + ι∗t, ~) = IF`n,X(ι∗t, ~) = e
ι∗t
~ (
∑
d≥0

qdJF`nd (ι∗x, ~)

∫
d σ

sn−1∏
k=1

(−ι∗xn + k~)).

This implies JX(ι∗t, ~) = e−
qn−1

~ IF`n,X(ι∗t, ~). �

3.2. Quantum differential equations of X. In this subsection, we will investigate quan-
tum differential equations of X, namely differential operators that annihilate JX(t, ~).

For any polynomial P (x, q) ∈ C[x, q], we write it in the fixed order with respect to
x1, · · · , xn, q1, · · · , qn−1, namely

P (x, q) =
∑
iI ,d

AdiIx
iIqd

with xiI := xi11 · · ·xinn , qd = qd11 · · · q
dn−1

n−1 and the coefficients AdiI ∈ C. Take the conventions:

(3.2) ~
∂

∂t[1,m]
:= (~

∂

∂t1
, ~

∂

∂t2
· · · , ~ ∂

∂tm
), q[1,m] := (q1, q2, · · · , qm),

where qj = etj−tj+1 whenever it is treated as an operator. We then denote

P (~
∂

∂t
, q) = P (~

∂

∂t[1,n]
, q[1,n−1]) :=

∑
iI ,d

AdiI (~
∂

∂t1
)i1 · · · (~ ∂

∂tn
)inqd11 · · · q

dn−1

n−1 ,

and call the differential operator P (~ ∂
∂t , q) the quantization of P (x, q).

Recall in Equation (1.1) that Eni = Eni (x, q) are the coefficients of the expansion of the
polynomial det(In + λMF`n) =

∑
iE

n
i λ

i in variable λ, with respect to the matrix

MF`n =



x1 q1

−1 x2 q2

−1 x3 q3

. . .
. . .

. . .

−1 xn−1 qn−1

−1 xn


.

Proposition 3.4 ( [GK95, Theorem 4]). Let Dn
i (~ ∂

∂t , q) be the quantization of Eni (x, q).

Then Dn
i (~ ∂

∂t , q)(J
F`n(t, ~)) = 0 for any 1 ≤ i ≤ n.

1The function IF`n,X in [CG07, Section 9] is a multiple of ours by ~ with the identification z = ~.
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Definition 3.5. Viewing qj = etj−tj+1, we define the operators

T, S : H(F`n) −→ H(X),

T(
∑
d≥0

qdfd(x, ~)) :=
∑
d≥0

qdfd(ι
∗x, ~)

∫
d σ

sn−1∏
k=1

(−ι∗xn + k~),

S(
∑
d≥0

qdfd(x, ~)) :=
∑
d≥0

qdfd(ι
∗x, ~)

∫
d σ

sn−1−1∏
k=1

(−ι∗xn + k~),

where the product
0∏

k=1

(resp.
−1∏
k=1

) is read off as multiplication by −ι∗xn (resp. by 1).

Lemma 3.6. As operators that send H(F`n) to H(X), we have

[~
∂

∂tk
,T] = [~

∂

∂tk
,S] = [ql,T] = [ql,S] = 0

for any 1 ≤ k ≤ n and 1 ≤ l ≤ n− 2. Moreover, we have

(3.3) − ~
∂

∂tn
◦ qn−1 ◦ T = T ◦ qn−1, qn−1 ◦ T = S ◦ qn−1, T = −S ◦ ~ ∂

∂tn
,

as operators acting on et/~
∑

d≥0 q
dfd(x, ~) with ∂fd

∂ti
= 0 for 1 ≤ i ≤ n held for any d.

Proof. Note that
∫
d σ

sn−1 = dn−1 and that the operators T and S are effected only by the

power dn−1 of qn−1 = etn−1−tn . Thus the identities in the first half of the statement hold.
The last identity in Equation (3.3) follows directly from the definition of the operators

S,T.

qn−1 ◦ T(et/~
∑
d≥0

qdfd(x, ~)) = eι
∗t/~

∑
d=(d1,··· ,dn−1),dn−1≥1

qdgd(ι
∗x, ~)

dn−1−1∏
k=1

(−ι∗xn + k~)

=S ◦ qn−1(et/~
∑
d≥0

qdfd(x, ~)),

where gd(ι
∗x, ~) = f(d1,d2,··· ,dn−1−1)(ι

∗x, ~). Thus the second identity in Equation (3.3)
holds. Denoting gd(x, ~) = f(d1,d2,··· ,dn−1−1)(x, ~), we have

T ◦ qn−1(et/~
∑
d≥0

qdfd(x, ~)) =T(et/~
∑

d=(d1,··· ,dn−1),dn−1≥1

qdgd(x, ~))

= eι
∗t/~

∑
d=(d1,··· ,dn−1),dn−1≥1

qdgd(ι
∗x, ~)

dn−1∏
k=1

(−ι∗xn + k~)

= − ~
∂

∂tn
◦ qn−1 ◦ T(et/~

∑
d≥0

qdfd(x, ~))

Therefore the first identity in Equation (3.3) holds as well. �
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Proposition 3.7. For the quantizations Dn
i (~ ∂

∂t[1,n]
, q[1,n−1]) of Eni (x, q),

Dn
i (~

∂

∂t[1,n]
, q[1,n−2], (−~

∂

∂tn
) ◦ qn−1)(IF`n,X(ι∗t, ~)) = 0.

holds for 1 ≤ i ≤ n− 1. Moreover, we have

(−Dn−1
n−1 +Dn−2

n−2qn−1)(IF`n,X(ι∗t, ~)) = 0.(3.4)

Proof. It follows directly from the definition that T(JF`n(t, ~)) = IF`n,X(ι∗t, ~). By Propo-
sition 3.4 and Lemma 3.6, for 1 ≤ i ≤ n− 1, we obtain

Dn
i (~

∂

∂t[1,n]
, q[1,n−2], (−~

∂

∂tn
) ◦ qn−1)(T(JF`n(t, ~))) =T ◦Dn

i (~
∂

∂t
, q)(JF`n(t, ~)) = 0.

By Lemma 3.6, all ql,
∂
∂tk

commute with T, S for 1 ≤ l ≤ n−2, 1 ≤ k ≤ n−1. It follows that

[Da
a, S] = 0 and [Da

a,T] = 0 for a ∈ {n − 1, n − 2}. Using the identities in Equation (3.3),
we have

(−Dn−1
n−1 +Dn−2

n−2qn−1)(IF`n,X(ι∗t, ~)) = (−Dn−1
n−1 +Dn−2

n−2qn−1)(T(JF`n(t, ~)))

= (S ◦ (~
∂

∂tn
) ◦Dn−1

n−1 + S ◦Dn−2
n−2 ◦ qn−1)(JF`n(t, ~))

=S(Dn
n(JF`n(t, ~))) = 0.

Here the third equality holds by noting Dn
n = (~ ∂

∂tn
)Dn−1

n−1 +Dn−2
n−2qn−1. �

Lemma 3.8. Both of the following identities hold.

(~
∂

∂tn−1
+ qn−1)JX(ι∗t, ~) = e−

qn−1
~ (~

∂

∂tn−1
)IF`n,X(ι∗t, ~),

(~
∂

∂tn
− qn−1)JX(ι∗t, ~) = e−

qn−1
~ (~

∂

∂tn
)IF`n,X(ι∗t, ~).

Proof. By Proposition 3.3, JX(ι∗t, ~) = e−
qn−1

~ IF`n,X(ι∗t, ~). Then the statement follows
from direct calculations by Leibniz rule:

(~
∂

∂tn−1
)(JX) = (−qn−1)e−

qn−1
~ IF`n,X + e−

qn−1
~ (~

∂

∂tn−1
)(IF`n,X),

(~
∂

∂tn
)(JX) = qn−1e

− qn−1
~ IF`n,X + e−

qn−1
~ (~

∂

∂tn
)(IF`n,X).

�

3.3. Proofs of Theorem 1.2 and Theorem 1.7. As shown in [ST97, Proposition 2.2]
by Siebert and Tian, the quantum cohomology QH∗(X) of the Fano manifold X is of the
form C[x, q]/Iq, provided that H∗(X) = C[x]/I and Iq is generated by the corresponding
quantized relations in QH∗(X) of the generators of I for H∗(X). Such relations can be
found out, by using the following well-known way due to Givental.

Proposition 3.9 ( [Gi96, Corollary 6.4]). If a differential operator P (~ ∂
∂ti
, eti−ti+1 , ~) sat-

isfies the equation P (~ ∂
∂ti
, eti−ti+1 , ~)(JY (t, ~)) = 0, then P (xi, qi, 0) = 0 in QH∗(Y ).
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We will first describe QH∗(X), and then prove Theorem 1.2 as a consequence, by using
[FP97, Proposition 11], which is a variation of [ST97, Proposition 2.2].

Theorem 3.10. The quantum cohomology ring of X is canonically given by

QH∗(X) = C[ι∗x1, · · · , ι∗xn, q1, · · · , qn−1]

/(
χ1, χ2, · · · , χn−1,

χn
ι∗xn − qn−1

)
.

Here χj := χj(ι
∗x, q) are given by det(In + λM̃X) =

∑n
i=0 χiλ

i with respect to the matrix

M̃X =



ι∗x1 q1

−1 ι∗x2 q2

−1 ι∗x3 q3

. . .
. . .

. . .

−1 ι∗xn−1 + qn−1 qn−1(−ι∗xn + qn−1)
−1 ι∗xn − qn−1


.

Proof. By Proposition 3.7 and Lemma 3.8, for any 1 ≤ i ≤ n− 1, we have

0 = e−
qn−1

~ Dn
i (~

∂

∂t[1,n]
, q[1,n−2], (−~

∂

∂tn
) ◦ qn−1)(IF`n,X)

=Dn
i (~

∂

∂t[1,n−2]
, ~

∂

∂tn−1
+ qn−1, ~

∂

∂tn
− qn−1, q[1,n−2], (−(~

∂

∂tn
− qn−1) ◦ qn−1) + ~G1 + ~2G2)

)
(JX)

where G1 = G1(~ ∂
∂t , q) and G2 = G2(~ ∂

∂t , q) are differential operators. Therefore by using
Proposition 3.9, we have

Dn
i (ι∗x1, · · · , ι∗xn−2, ι

∗xn−1 + qn−1, ι
∗xn − qn−1, q1, q2, · · · , qn−2, qn−1(−ι∗xn + qn−1)) = 0

in QH∗(X). That is, χi(ι
∗x, q) = 0 holds in QH∗(X).

The next two equalities follow directly from Lemma 3.8 and Proposition 3.7 respectively.(
−Dn−1

n−1(~
∂

∂t[1,n−2]
, ~

∂

∂tn−1
+ qn−1, q[1,n−2]) +Dn−2

n−2(~
∂

∂t[1,n−2]
, q[1,n−2])qn−1 + ~H1

)
(JX)

= e−
qn−1

~
(
−Dn−1

n−1(~
∂

∂t[1,n−1]
, q[1,n−2]) +Dn−2

n−2(~
∂

∂t[1,n−2]
, q[1,n−2])qn−1

)
(IF`n,X) = 0,

where H1 = H1(~ ∂
∂t , q) is a differential operator. Therefore, by Proposition 3.9, in QH∗(X)

we have

−En−1
n−1(ι∗x1, · · · , ι∗xn−2, ι

∗xn−1+qn−1, q1, · · · , qn−2)+En−2
n−2(ι∗x1, · · · , ι∗xn−2, q1, · · · , qn−2)qn−1 = 0.

The left hand side of the above equality equals −En−1
n−1(ι∗x1, · · · , ι∗xn−1, q1, · · · , qn−2) and

hence equals − χn(ι∗x,q)
ι∗xn−qn−1

by Laplace expansion of matrices. Then we are done by using

Proposition 2.2 and [ST97, Proposition 2.2]. �

Now we are ready to show the ring presentation of the integral quantum cohomology
QH∗(X,Z) in Theorem 1.2, as well as the ring homomorphism in Theorem 1.7.
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Proof of Theorem 1.2. Abusing the notation for ι∗xi and xi, we notice MX = AM̃XA
−1

with A = In + qn−1Bn−1,n, where Bn−1,n is the matrix with 1 in the (n − 1, n)-entry and

zeros elsewhere. Hence, the matrices MX and M̃X have the same characteristic polyno-
mial, implying Êni = χi for all 1 ≤ i ≤ n. Again we note χn

xn−qn−1
= En−1

n−1 . Thus all

Ên1 , · · · , Ênn−1, E
n−1
n−1 vanish in QH∗(X) = QH∗(X,Z) ⊗ C, so do in QH∗(X,Z). Their

evaluations at q = 0 give the ideal I = (en1 , · · · , enn−1, e
n−1
n−1), providing the ring presen-

tation H∗(X,Z) = Z[x1, · · · , xn]/I by Proposition 2.2. Therefore the statement follows
from [FP97, Proposition 11]. �

Proof of Theorem 1.7. Define ι∗q(xi) = xi and ι∗q(qi) = qi for 1 ≤ i ≤ n− 2. Define

ι∗q(xn−1) = xn−1 + qn−1, ι∗q(xn) = xn − qn−1, ι∗q(qn−1) = −qn−1xn + q2
n−1.

This induces a ring homomorphism ι∗q : Z[x, q]→ Z[x, q] with

ι∗q(E
n
i (x, q)) = Eni (x1, · · · , xn−2, ι

∗
q(xn−1), ι∗q(xn), q1, · · · , qn−2, ι

∗
q(qn−1)) = χi(x, q)

for all 1 ≤ i ≤ n. That is, ι∗q(E
n
i (x, q)) = Êni (x, q) for 1 ≤ i ≤ n − 1, and ι∗q(E

n
n(x, q)) =

(xn − qn−1)En−1
n−1(x, q) by the proof of Theorem 1.2. Hence it further induces a ring homo-

morphism

ι∗q : QH∗(F`n,Z) =
Z[x, q]

(En1 , · · · , Enn)
−→ Z[x, q]

(Ên1 , · · · , Ênn−1, E
n−1
n−1)

= QH∗(X,Z).

Hence, we are done, by noting σi = [x1+· · ·+xi] on the left hand side, and ξi = [x1+· · ·+xi]
on the right hand side. (In particular, ξsn−1 = [−xn].) �

4. Quantum Monk-Chevalley formula for X

Let Y ∈ {F`n, X}. By d we always mean d = (d1, · · · , dn−1) =
∑n−1

i=1 di[Xsi ] ∈ H2(Y,Z).
For 1 ≤ a < b ≤ n, we denote

(4.1) αab :=

b−1∑
i=a

di[Xsi ], qab := qaqa+1 · · · qb−1 = qαab .

The following quantum Monk’s formula for F`n was proved in [FGP97, Theorem 1.3] (see
[FW04] for the quantum Chevalley formula for general G/P ), where lr (resp. lq

r) denotes
the (quantum) r-Bruhat order defined in Equation (2.2) (resp. Equation (2.3)).

Proposition 4.1 (Quantum Monk’s formula). For u ∈ Sn and 1 ≤ r < n, in QH∗(F`n,Z)
we have

σsr ? σu =
∑

ulrutab

σutab +
∑

ulqrutck

qckσ
utck .

Since {σu}u form an Z[q]-basis of QH∗(F`n,Z), we can write

σv ? σu =
∑
w,d

Nw,d
v,u q

dσw.
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We further denote by Nw,d
v,u∪u′ the coefficient of qdσw in the product σv ? (σu ∪ σu′). In

particular if v = sr and d 6= 0, then by the quantum Monk’s formula, σu ∪ σu′ is a sum of
distinct σũ, which contribute nonzero quantum Schubert structure constants (equal to 1)
only if d = αab and ũ = wtab. Therefore, the quantum Monk-Chevalley formula in the form
of Theorem 1.3 is equivalent to the following description.

Theorem 4.2. Let 1 ≤ r ≤ n− 1 and u ∈ Sn with u ≤ w0sn−1. In QH∗(X), we have

ξsr ? ξu =
∑

w≤w0sn−1

Nw,0
sr,uξ

w +
∑

dn−1=0

Nw,d
sr,uξ

wqd +
∑

dn−1=1

Nw,d
sr,(u∪sn−1)ξ

wqd − δr,n−1qn−1ξ
u.

The constraint w ≤ w0sn−1 is a prior required in the second and third sum of the formula
ξsr ? ξu, but turns out to be redundant (see Remark 4.12).

This section is devoted to a proof of the above theorem. We use the current form in
Theorem 4.2, to indicate our approach that degree-d Gromov-Witten invariants of X with
dn−1 ≤ 1 can be reduced that of F`n−1, and that the vanishing of those with dn−1 ≥ 2 can
be confirmed.

4.1. Degree-d Gromov-Witten invariants with dn−1 ≤ 1. In this subsection, we com-
pute Gromov-Witten invariants 〈β, γ〉0,2,d of X with dn−1 ≤ 1.

4.1.1. Unobstructedness of moduli spaces. Recall the line bundle Lωn−1 over F`n defined in
(2.6), the zero locus of a section of which defines the smooth Schubert divisor X.

Lemma 4.3. Let f : P1 → X be a morphism satisfying f∗[P1] = d with dn−1 ≤ 1. Then we
have H1(P1, f∗TX) = 0.

Proof. The exact sequence

0→ TX → TF`n |X → E → 0,

pulling back to P1, and then tensoring with OP1(−1), induces a long exact sequence:

· · · → H0(P1, (f∗E)(−1))→ H1(P1, (f∗TX)(−1))→ H1(P1, (f∗TF`n |X)(−1))→ · · · .

Since TF`n is globally generated and vector bundles over P1 are splitting, we have

(f∗TF`n |X)(−1) =
⊕
i

OP1(ai − 1)

with ai ≥ 0 for all i. Thus H1(P1, (f∗TF`n |X)(−1)) = 0. On the other hand, (f∗E)(−1) =
OP1(dn−1 − 1) with dn−1 ≤ 1, which implies

dim H1(P1, (f∗TX)(−1)) ≤ 1.(4.2)

Suppose (f∗TX)(−1) =
⊕

iOP1(bi−1), Equation (4.2) implies all bi ≥ 0 except at most one
bi0 = −1. In other words, f∗TX =

⊕
i 6=i0 OP1(bi)⊕O(−1) with bi ≥ 0 or f∗TX =

⊕
iOP1(bi)

with bi ≥ 0, which implies H1(P1, f∗TX) = 0. �

Proposition 4.4. Let d ≥ 0 with dn−1 ≤ 1. Then the virtual fundamental class [M0,k(X, d)]vir

coincides with the usual fundamental class [M0,k(X, d)].
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Proof. Let ft : M0,k+1(X, d) −→ M0,k(X, d) be the forgetful morphism by forgetting the

last marked point (which is the universal curve overM0,k(X, d) [BM96]). For any (f : C →
X; pt1, · · · , ptk) ∈ M0,k(X, d), by using Lemma 4.3 and following (the proof of) [FP97,
Lemma 10], we have H1(C, f∗TX) = 0. Therefore we have R1ft∗ev

∗
k+1TX = 0. Then by

[BeFa97, Proposition 7.3], [M0,k(X, d)]vir is the usual fundamental class [M0,k(X, d)]. �

4.1.2. Computation of Gromov-Witten invariants with dn−1 = 1. In this subsection, we
always assume d ≥ 0 with dn−1 = 1. For a decomposition d = d′ + d′′, we always require
both d′ ≥ 0 and d′′ ≥ 0. Recall the natural projection map pr : F`n → Gr(n−1, n) = Pn−1.
Note that H := pr(X) is a hyperplane in Pn−1. The inclusion ι : X ↪→ F`n induces a
natural inclusion M0,2(X, d) ↪→M0,2(F`n, ι∗d) denoted as ι by abuse of notation. Denote

A◦ :=
{

(f : C → F`n; pt1, pt2) ∈M0,2(F`n, ι∗d) | f(pti) ∈ X, pr(f(pt1)) 6= pr(f(pt2))
}

;

B :=
{

(f : C → F`n; pt1, pt2) ∈M0,2(F`n, ι∗d) | pr(f(pt1)) = pr(f(pt2)) ∈ H
}
.

Since dn−1 = 1, pr ◦ f(C) is a line in Pn−1, containing pr(f(pt1)), pr(f(pt2)). It follows
that f(C) ⊂ X for any stable map f in A◦, as the line contains the two distinct points
pr(f(pt1)), pr(f(pt2)) in H has to lie in H. Note that A◦ is a Zariski open dense subset of
ι(M0,2(X, d)). Thus for the evaluation maps evi :M0,2(F`n, ι∗d) −→ F`n, we have

(4.3) ev−1
1 (X) ∩ ev−1

2 (X) = A ∪ B, with A := A◦ = ι(M0,2(X, d)).

Here we note that M0,2(X, d) is proper, so ι(M0,2(X, d)) is closed in M0,2(F`n, ι∗d).

Denote by Xk,d = ev−1
k (X) ⊂M0,k(F`n, ι∗d) the space of stable maps whose last marked

point is mapped to X. A stable map (f : C → F`n, pt1, pt2) in B is of the form

(1) C = C1 ∪ C2, where the marked points x1, x2 are contained in C1;
(2) f1 = f |C1 is a stable map to pr−1(p) for some p ∈ H;
(3) f2 = f |C2 is a stable map to Fln.

Actually, we can take C1 to be the union of components of C which is maximal with respect
to (1) and (2). The the union of the remaining components C2 is connected since the image
pr(f(C)) is a line. As a result, B can be written as the following union, in analogy with
the boundary divisors of moduli space of stable maps (see e.g. [FP97, Section 6.2]).

(4.4) B =
⋃

d′+d′′=d
d′n−1=0

Bd′,d′′ , with Bd′,d′′ := X3,d′ ×X X1,d′′ .

Here the the fiber product over X stands for the constraint f1(pt3) = f2(pt) ∈ X for the
nodal point of C. By direct calculations, we have

dimBd′,d′′ = 〈ι∗d′, c1(F`n)〉+ dimX + 〈ι∗d′′, c1(F`n)〉 − 2 = 〈ι∗d, c1(F`n)〉+ dimX − 2.

That is, B is of pure dimension. Note A and B are both of codimension 2 inM0,2(F`n, ι∗d).

Proposition 4.5. Let d ≥ 0 with dn−1 = 1. For u,w ∈ Sn with u,w ≤ w0sn−1, we have

〈ξu, ξw〉X0,2,d = 〈σu ∪ σsn−1 , σw ∪ σsn−1〉F`n0,2,ι∗d
− δqd,qn−1

〈σu, σw, σsn−1〉F`n0,3,0.
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Proof. Note that the Schubert divisor X defines the Schubert class σsn−1 = PD([X]), and
ev−1
i (X) are divisors of M0,2(F`n, ι∗d). As discussed above, we have the decomposition

ev−1
1 (X)∩ev−1

2 (X) =M0,2(X, d)∪
⋃

(d′,d′′)X3,d′×XX1,d′′ with each irreducible component

of codimension 2 in M0,2(F`n, ι∗d). Hence, we have

〈σu ∪ σsn−1 , σw ∪ σsn−1〉F`n0,2,ι∗d

=

∫
[M0,2(F`n,ι∗d)]

ev∗1σ
u ∪ ev∗2σw ∪ ev∗1σsn−1 ∪ ev2

∗σsn−1

=

∫
[ev−1

1 (X)∩ev−1
2 (X)]

ev∗1σ
u ∪ ev∗2σw

=

∫
[M0,2(X,d)]

ev∗1σ
u ∪ ev∗2σw +

∑
(d′,d′′)

∫
[X3,d′×XX2,d′′ ]

ev∗1σ
u ∪ ev∗2σw.

The first term in the last equality is equal to∫
[M0,2(X,d))]

ι∗(ev∗1σ
u ∪ ev∗2σw) =

∫
[M0,2(X,d)]

ev∗1ι
∗σu ∪ ev∗2ι ∗ σw = 〈ξu, ξw〉X0,2,d.

Note ev1 × ev2 : X3,d′ ×X X1,d′′ → X ×X factors through

X3,d′ ×X X1,d′′
φ−→ X3,d′

ev1×ev2−→ X ×X,

where φ is a fibration with generic fibers of dimension the same as that of the generic fiber
of the evaluation mapM0,1(F`n, ι∗d

′′
)→ F`n, namely of dimension 〈ι∗d′′, c1(TF`n)〉+1−3.

Hence, φ∗[X3,d′ ×X X1,d′′ ] = 0 unless 〈ι∗d′′, c1(TF`n)〉 = 2, i.e. d′′ = [Xsn−1 ] = αn−1,n. In

this case,M0,1(F`n, d
′′) ∼= F`n, thus X3,d′ ×X X1,d′′ → X3,d′ is of degree 1. Hence, we have

∑
(d′,d′′)

∫
[X3,d′×XX1,d′′ ]

ev∗1σ
u ∪ ev∗2σw =

∑
(d′,d′′)

∫
[X3,d′×XX1,d′′ ]

φ∗ ◦ (ev1 × ev2)∗(σu � σw)

=
∑

(d′,αn−1,n)

∫
[X3,d′ ]

(ev1 × ev2)∗(σu � σw)

=
∑

(d′,αn−1,n)

∫
[M0,3(F`3,ι∗d′)]

ev∗1σ
u ∪ ev∗2σw ∪ ev∗3σsn−1 .

Recall that d′n−1 = 0. If d′ 6= 0, then by the divisor axiom, we have
∫

[M0,3(F`3,ι∗d′)]
ev∗1σ

u ∪
ev∗2σ

w ∪ ev∗3σsn−1 =
∫
ι∗d′

σsn−1
∫
M0,2(F`n,ι∗d′)

ev∗1σ
u ∪ ev∗2σw = 0. Hence, the above sum is

nonzero only if d = αn−1,n = d′′, in which case we have∑
(d′,d′′)

∫
[X3,d′×XX1,d′′ ]

ev∗1σ
u∪ev∗2σw =

∫
[M0,3(F`3,0)]

ev∗1σ
u∪ev∗2σw∪ev∗3σsn−1 = 〈σu, σw, σsn−1〉F`n0,3,0.

Hence, the statement follows. �
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4.1.3. Computation of Gromov-Witten invariants with dn−1 = 0. The analysis for dn−1 = 0
is similar to but much simpler than that for dn−1 = 1.

Proposition 4.6. Let d ≥ 0 with dn−1 = 0. For u,w ∈ Sn with u,w ≤ w0sn−1, we have

〈ξu, ξw〉X0,2,d = 〈σu, σw ∪ σsn−1〉F`n0,2,ι∗d
.

Proof. For i ∈ {1, 2} and (f : C → F`n; pt1, pt2) ∈ ev−1
i (X) ⊂ M0,2(F`n, ι∗d), we have

pr∗([f(C)]) = 0, so that pr(f(C)) consists of a point in Pn−1.Moreover, f(pt1) = f(pt2) =
evi(f) ∈ X. It follows that f(C) ⊂ X. Hence, ev−1

i (X) = ι(M0,2(X, d)) for any i ∈ {1, 2}.
Recall ξu = ι∗σu and note PD([ev−1

i (X)]) = ev∗i σ
sn−1 . Hence, we have

〈ξu, ξw〉X0,2,d =

∫
[M0,2(X,d)]

ev∗1ι
∗σu ∪ ev∗2ι∗σw

=

∫
[M0,2(X,d)]

ι∗(ev∗1σ
u ∪ ev∗2σw)

=

∫
[ι(M0,2(X,d))]

ev∗1σ
u ∪ ev∗2σw

=

∫
[M0,2(F`n,ι∗d)]

ev∗1σ
u ∪ ev∗2σw ∪ ev∗2σsn−1 . �

4.2. Vanishing of Gromov-Witten invariants with dn−1 ≥ 2.

4.2.1. Vanishing by curve neighborhood technique. We use the curve neighborhood tech-
nique developed by Buch and Mihalcea [BM15], to show the vanishing of Gromov-Witten
invariants of degree d with dn−1 ≥ 2 and d 6= αin + αn−1,n.

Definition 4.7. Let d ≥ 0 and u ∈ Sn, which further satisfies u(n) 6= 1 for Y = X. The
curve neighborhood ΓYd (Xu) of Xu of degree d is a reduced subscheme of Y defined by

ΓYd (Xu) = ev2(ev−1
1 (Xu)).

The permutation zd ∈ Sn associated with d ≥ 0 is defined by using the Heck product •
on Sn as follows. Note

w • si =

{
wsi, if `(wsi) > `(w),

w, otherwise.

Take a sequence (αi1j1 , αi2j2 , · · · , αikjk) of maximal elements αirjr =
∑jr−1

m=ir
[Xsm ] with

respect to d; that is, each αirjr is maximal in the sense αirjr ∈ Ar := {αab | d − αab −∑r−1
m=1 αimjm ≥ 0} with jr − ir = max{b− a | αab ∈ Ar}. Then k depends only on d, and

zd := ti1j1 • ti2j2 • · · · • tikjk ∈ Sn
is also independent of choices of the sequences of maximal elements with respect to d.

Proposition 4.8 ( [BM15, Theorem 5.1]). ΓF`nd (Xu) = Xu•zd, for u ∈ Sn and d ≥ 0.

Lemma 4.9. Let d ≥ 0 with dn−1 ≥ 2. Then we have `(zd) ≤ 〈d, c1(TX)〉− 1, with equality
holding only if d = αin + αn−1,n for some i.
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Proof. Take a sequence (αi1j1 , αi2j2 , · · · , αikjk) of maximal elements with respect to d. With-
out loss of generality, we can assume jr = n for 1 ≤ r ≤ dn−1 (by noting that the correspond-
ing transpositions of the form tcn are disjoint with that of the form tab with b < n; otherwise,
b = c, and αan would be a bigger element than αcn). Note `(tab) = 2b− 2a− 1 = 2|αab|− 1,
`(tan • tbn) ≤ `(tan) + `(tbn)−1 (since tan (resp. tbn) has a reduced expression ending (resp.
starting) with sn−1). Hence, k ≥ dn−1 ≥ 2, and we have

`(zd) ≤ `(ti1n • · · · • tidn−1
n) + `(tidn−1+1jdn−1+1

• · · · • tikjk)

≤
dn−1∑
r=1

`(tirn)− (dn−1 − 1) +

k∑
r=dn−1+1

`(tirjr)

= 2|d| − k − (dn−1 − 1)

≤ 2|d| − dn−1 − (dn−1 − 1) = 〈d, c1(TX)〉 − dn−1 + 1.

Hence, `(zd) ≤ 〈d, c1(TX)〉 − 1, with equality holding only if k = dn−1 = 2. When the
equality holds, all the above inequalities are equalities. In particular, we have d = αin+αjn
with i ≤ j, and `(tin · (sn−1tjn) = `(tin • tjn) = `(tin) + `(tjn)− 1 = `(tinsn−1tjn). It follows
that sjsj+1 · · · sn−2tjn is a reduced expression, where tjn = sn−1sn−2 · · · sj · · · sn−2sn−1 is
reduced. Then sjsj+1 · · · sn−2tjn(n − 1) > sjsj+1 · · · sn−2tjn(n), resulting in a contraction
j > j + 1 if j < n− 1. �

Proposition 4.10. Let d ≥ 0 satisfy dn−1 ≥ 2 and d 6= αin + αn−1,n for 1 ≤ i ≤ n − 1.
Then for any β, γ ∈ H∗(X), we have 〈β, γ〉0,2,d = 0.

Proof. Take any u, v ∈ Sn with u, v ≤ w0sn−1. Note ΓXd (Xu) ⊆ ΓF`nd (Xu) = Xu•zd by
Proposition 4.8. Since dn−1 ≥ 2 and d 6= αin + αn−1,n, by Lemma 4.9, we have

dim ΓXd (Xu) ≤ dim(Xu•zd) = `(u • zd) ≤ `(u) + `(zd) < `(u) + 〈d, c1(TX)〉 − 1.

Denote PD([Xu]) as [Xu] by abuse of notation. Using projection formula, we have∫
[M0,2(X,d)]vir

ev∗1([Xu]) ∪ ev∗2([Xv]) =

∫
X

(ev2)∗(ev
∗
1([Xu]) ∩ [M0,2(X, d)]vir) ∪ [Xv].

The cycle (ev2)(ev−1
1 ([Xu])) is supported on the curve neighborhood ΓXd (Xu), and the

pushforward (ev2)∗(ev
∗
1([Xu]) ∩ [M0,2(X, d)]vir) is non-zero only if the curve neighborhood

ΓXd (Xu) has components of dimension

expdim M0,2(X, d)− (dimX − `(u)) = 〈d, c1(TX)〉 − 1 + `(u).

However, such components do not exist by the above estimation of dim ΓXd (Xu).
Hence, 〈[Xu], [Xv]〉0,2,d =

∫
[M0,2(X,d)]vir ev

∗
1([Xu]) ∪ ev∗2([Xv]) = 0. Since {[Xu]}u≤w0sn−1

is a basis of H∗(X,Z), the statement follows. �

4.2.2. Vanishing for specific degrees. It remains to show the vanishing of Gromov-Witten
invariants for d = αin + αn−1,n. We follow a similar idea to the approach to proving
[HKLS24, Lemma 3.7] and [HKLS25, Theorem 4.1 (b)].

Let us consider

P = F`1,...,n−2;n, Y = {V• ∈ P | F1 ⊆ Vn−2}.
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We have a natural projection π : X → P by forgetting Vn−1. The fiber at a point of Y is
P1, while the fiber is a point at a point P \ Y . Note

dimP = dimX, dimY = dimP − 2.

Proposition 4.11. Let d = αin+αn−1,n where 1 ≤ i ≤ n−1. Then for any β1, β2 ∈ H∗(X),
we have 〈β1, β2〉0,2,d = 0.

Proof. We discuss the degrees in two cases.

Case i = n − 1. In this case, π∗d = 0. Therefore any stable map of degree d is contained
in a fiber of π at some point of Y . This defines a morphism from the moduli space to P
whose image is included in Y . Denoting ev = ev1 × ev2 and by ∆ the diagonal map, we
have

M0,2(X, d)
ev //

��

X ×X

��
P ∆ // P × P

The space M0,2(X, d) has expected dimension

dimX + degX q
2
n−1 + 2− 3 = dimX + 1.

While the image of ev lies in the preimage of Y of X ×P X, which is a P1×P1-bundle over
Y . Thus its dimension is

dimY + 2 = dimX − 2 + 2 = dimX.

Thus ev∗[M2(M,d)]vir = 0.

Case i < n− 1. We have a similar commutative diagram

M0,2(X, d)
ev //

π̂
��

X ×X

π×π
��

M0,2(P, π∗d)
evP // P × P.

Note that degX αj,j+1 = 2 = degP π∗αj,j+1 for j < n − 2, degX αn−2,n−1 = 2 =
degP π∗αn−2,n−1 − 1 and degX αn−1,n = 1. Hence, we have

exp dimM0,2(X, d) = dimX + degX q
d + 2− 3,

exp dimM0,2(P, π∗d) = dimM0,2(P, π∗d) = exp dimM0,2(X, d)− 1.

Moreover the map π̂ cannot be surjective, since any stable map in the image has an extra
constrain that C intersects with Y . This reduces one more dimension:

dim(im(π̂)) ≤ dimM0,2(P, π∗d)− 1.

As a result, ev∗[M0,2(X, d)]vir is supported over

(π × π)−1(im(evP ◦ π̂)).
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Since the fibers of π × π have dimension at most 2, it has dimension at most

dim(im(evP ◦ π̂)) + 2 ≤ dim(im π̂) + 2

≤ dimM0,2(P, π∗d)− 1 + 2 = exp dimM0,2(X, d).

If ev∗[M0,2(X, d)]vir 6= 0, then the equalities must be achieved. Note that π × π has two-
dimensional fibers only at points of Y × Y , the equality holds only if evP restricts to a
morphism Z1 → Z2 of finite degree, where Z1 is a component of im π̂ of codimension 1
in M0,2(P, π∗d) and Z2 is a component of im(evP) contained in Y × Y . By (the proof
of) [BCMP13, Lemma 3.8], Z2 is contained in a locally trivial fibration over Y1 ⊂ Y with
fiber ΓPπ∗d(y), where Y1 denotes the natural projection of Z2 ⊂ Y × Y to the first factor.

By [BM15, Theorem 5.1], the fiber ΓPπ∗d(y) is a Schubert variety of P, indexed by the

permutation zPπ∗d = zαinsn−1 = tinsn−1. Thus is of dimension `(zPπ∗d) = `(tin)− 1.

dimZ2 = dimY1 + dim ΓPπ∗d(y) ≤ dimY + `(tin)− 1 = dimX − 2 + 2(n− i)− 1− 1,

dimZ1 = dimM0,2(P, d)− 1 = exp dimM0,2(X, d)− 2 = dimX + 2(n− i)− 1− 2,

resulting in a contradiction 0 = dimZ2 − dimZ1 ≤ −1. �

4.3. Proof of Theorem 4.2. Note that {PD([Xu])}u is the dual basis of {ξu}u with
respect to the Poincaré pairing. Write PD([Xu]) =

∑
γ a

u
γξ
γ . Using the projection formula,

δu,w =

∫
[X]

PD([Xu]) ∪ ξw =

∫
[X]

ι∗(
∑
γ

auγσ
γ) ∪ ι∗σw =

∫
[F`n]

∑
γ

auγσ
γ ∪ ι∗(ι∗σw).

Note ι∗(ι
∗σw) = ι∗(ι

∗σw ∪ ξid) = σw ∪PD([X]) = σw ∪ σsn−1 . The permutation u varies in
Sn with u(n) 6= 1. Hence,∑

γ

awγ σ
γ ∪ σsn−1 = (σw)∨ +

∑
η(n)=1

bη(σ
η)∨.

We have

ξsr ? ξu =
∑
w,d

〈ξsr , ξu, PD([Xw])〉X0,3,dξwqd

=
∑

v≤w0sn−1

〈ξsr , ξu, PD([Xw])〉X0,3,0ξw +
∑

w≤w0sn−1,d 6=0

〈ξsr , ξu, PD([Xw])〉X0,3,dξwqd.

By Proposition 4.10 and Proposition 4.11, there are no qd-terms in the second sum when-
ever dn−1 ≥ 2. By the divisor axiom in Gromov-Witten theory, for d 6= 0 we have
〈ξsr , ξu, [Xv]〉X0,3,d =

∫
d ξ

sr〈ξu,
∑

γ a
v
γξ
γ〉0,2,d.



22 CHANGZHENG LI, JIAYU SONG, RUI XIONG, AND MINGZHI YANG

For dn−1 = 1, by Proposition 4.5, we have∫
d
ξsr〈ξu,

∑
γ

awγ ξ
γ〉X0,2,dqd

=

∫
d
σsr〈σu ∪ σsn−1 ,

∑
γ

awγ σ
γ ∪ σsn−1〉F`n0,2,dq

d −
∫
d
ξsrδqd,qn−1〈σu,

∑
γ

awγ σ
γ , σsn−1〉F`n0,3,0qn−1

=

∫
d
σsr〈σu ∪ σsn−1 ,

∑
γ

awγ σ
γ ∪ σsn−1〉F`n0,2,dq

d −
∫
d
ξsrδqd,qn−1

qn−1

∫
[F`n]

σu ∪ (
∑
γ

awγ σ
γ) ∪ σsn−1

=〈σsr , σu ∪ σsn−1 , (σw)∨ +
∑

η(n)=1

bη(σ
η)∨〉F`n0,3,dq

d −
∫
d
ξsrδqd,qn−1

qn−1

∫
[F`n]

σu ∪ ((σw)∨ +
∑

η(n)=1

bη(σ
η)∨)

=〈σsr , σu ∪ σsn−1 , (σw)∨)∨〉F`n0,3,dq
d −

∫
d
ξsrδqd,qn−1

qn−1δu,w

The last equality holds by noting
∫

[F`n] σ
u ∪ (ση)∨ = 0 (since u(n) 6= 1)) and

〈σsr , σu ∪ σsn−1 , (ση)∨〉F`n0,3,d =
∑
ũ

〈σsr , σũ, (ση)∨〉F`n0,3,d =
∑
ũ

Nη,d
sr,ũ

= 0

for any permutation η with η(n) = 1. Indeed, by the quantum Monk’s formula for F`n,

uln−1 ũ and for ŵ ∈ Sn, N ŵ,d
sr,ũ
6= 0 only if ũlq ŵ = ũtan for some a (since dn−1 = 1).

i) If ũ ≤ w0sn−1, then ŵ ≤ ũ ≤ w0sn−1, i.e. ŵ(n) 6= 1;
ii) If ũ 6≤ w0sn−1, i.e. ũ(n) = 1, then ŵ(n) = ũtan(n) = ũ(a) 6= ũ(n) = 1.

Thus the sum is vanishing for any η with η(n) = 1.
For d 6= 0 with dn−1 = 0, by Proposition 4.6, we have∫

d
ξsr〈ξu,

∑
γ

awγ ξ
γ〉X0,2,dqd =

∫
d
σsr〈σu,

∑
γ

awγ σ
γ ∪ σsn−1〉F`n0,2,dq

d

= 〈σsr , σu, (σw)∨ +
∑

η(n)=1

bη(σ
η)∨〉F`n0,3,dq

d

= 〈σsr , σu, (σw)∨〉F`n0,3,dq
d.

The last equality holds again by noting 〈σsr , σu, (σŵ)∨〉F`n0,3,dq
d = 0 unless ulq

r ŵ, implying

ŵ(n) 6= 1. Hence, we are done. �

Remark 4.12. The arguments i) and ii) in the above proof say that for any u,w ∈ Sn and
any a, k, the hypothesis uln−1 wtan lq

k w implies w(n) 6= 1, i.e. w ≤ w0sn−1.

5. Quantum Schubert polynomials for X

This section is devoted to a proof of Theorem 1.6, namely for any w, the quantum
Schubert polynomial Sq

w of Fomin, Gelfand and Postnikov represents the pullback Schubert
class ξw, under the canonical ring isomorphism in Theorem 1.2.

Recall

qab := qaqa+1 · · · qb−1 for 1 ≤ a < b ≤ n.
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5.1. Quantum Schubert polynomials. The classical Schubert polynomials were intro-
duced by Lascoux and Schützenberger [LS82] by using the divided difference operators ∂i’s
of Bernstein, Gelfand and Gelfand [BGG73]. Precisely, for f = f(x1, · · · , xn) ∈ Z[x] and

w ∈ Sn, denote wf = f(xw−1(1), · · · , xw−1(n)). Then ∂if := f−sif
xi−xi+1

∈ Z[x], and the classcial

Schubert polynomials Sw(x) is recursively defined by

(5.1) Sw0 = xn−1
1 xn−2

2 · · ·xn−1 and Swsi = ∂iSw whenver `(wsi) = `(w)− 1.

The following were shown in [LS82].

(1) Φ(σw) = [Sw(x)] under the canonical ring isomorphism Φ in Proposition 2.1.
(2) {e1

i1
e2
i2
· · · en−1

in−1
}0≤ij≤j form a Z-basis of Z[x].

Therefore, we have the linear expansion Sw =
∑
αi1...in−1e

1
i1
e2
i2
· · · en−1

in−1
. In [FGP97],

Fomin, Gelfand and Postnikov introduced the quantum Schubert polynomial

(5.2) Sq
w :=

∑
αi1...in−1E

1
i1E

2
i2 · · ·E

n−1
in−1

.

They also showed Φq(σ
w) = [Sq

w], under the canonical ring isomorphism in Φq [GK95],

(5.3) Φq : QH∗(F`n,Z) −→ Z[x1, · · · , xn, q1, · · · , qn−1]/(En1 , · · · , Enn).

Recall the (quantum) r-Bruhat order lr (resp. lq
r) defined in Equation (2.2) (resp.

Equation (2.3)). The following is the quantum Monk’s formula on the level of polynomials,
proved in the first half of [FGP97, Theorem 7.1].

Proposition 5.1 (Quantum Monk’s formula). For u ∈ Sn and 1 ≤ r < n, in Z[x] we have

Sq
srS

q
u = (x1 + · · ·+ xr)S

q
u =

∑
ulrutab

Sq
utab

+
∑

ulqrutck

qckS
q
utck

.

Lemma 5.2. Let u,w ∈ Sn and 1 ≤ a < b ≤ n.

(1) ulutab if and only if u(a) < u(b) and for any a < c < b, we have u(c) /∈ [u(a), u(b)].
(2) ulqutab if and only if u(a) > u(b) and for any a < c < b, we have u(c) ∈ [u(b), u(a)].

Proof. Note `(tab) = 2b − 2a − 1. The statement follows from a direct counting of the
number of inversions, which defines the length of a permutation. �

The next proposition is a special case of the second half of [FGP97, Theorem 7.1], with
a slightly more precise description than that in loc. cit.; see also [LOTRZ25, Theorem 4].
This special case will play a crucial role in our proof of Theorem 1.6. A permutation w ∈ Sn
is said to have a descent at the k-th position if w(k + 1) < w(k).

Proposition 5.3 (Transition equation). Let w ∈ Sn \ {id}. Denote by i the last descent
position of w. Take the maximal j with w(j) < w(i). Then u := wtij satisfies u l w, and
we have

Sq
w = xiS

q
u +

∑
uluthi

Sq
uthi

+
∑

ulquthi

qhiS
q
uthi
−

∑
ulqutik

qikS
q
utik

.

Proof. It follows directly from the definition that i < j and that for any i < c < j,
u(c) = w(c) < w(j) = u(i) (where the inequality holds since i is the last descent position).
Thus ul w by Lemma 5.2 (1).
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By Proposition 5.1, we compare the two quantum Monk’s formulas

(x1 + x2 + · · ·+ xi−1)Sq
u =

∑
uli−1utab

Sq
utab

+
∑

ulqi−1utck

qckS
q
utck

;

(x1 + x2 + · · ·+ xi)S
q
u =

∑
uliutab

Sq
utab

+
∑

ulqiutck

qckS
q
utck

.

Notice that if c ≤ i−1 < i < k, then ulq
i−1utck implies ulq

i utck. Therefore the difference
of the two products involving quantum parts happens exactly when either k = i in the first
product or c = i in the second product. Hence, the quantum part of the statement follows.

For the classical part, the same argument applies once we show that u l utib implies
b = j. Indeed, assume u l utib for some b 6= j. Then w(j) = u(i) < u(b) = w(b) by
Lemma 5.2. Since i is the last descent position of w, it follows that j < b. Furthermore,
we have u(j) = w(i) < w(b) = u(b), since j is maximal with respect to w(j) < w(i). But
then we would have i < j < b and u(i) < u(j) < u(b), contradicting with u l utib by
Lemma 5.2. �

Lemma 5.4. Let w ∈ Sn \ {id} with w(n) 6= 1. Then all the permutations v occurring on
the right hand side of the formula of Sq

w in Proposition 5.3 satisfy v(n) 6= 1.

Proof. With the same notation in Proposition 5.3, if v = u = wtij , then u(n) ≥ u(j) >
u(i) ≥ 1. If v = uthi, then v(n) = u(n) 6= 1 by noting i < n. It remains to discuss the case
v = utik. Since u lq utik, by Lemma 5.2, u(k) < u(i) = w(j), so k < j since i is the last
descent postion. In particuar, k 6= n. Thus, v(n) = u(n) 6= 1. �

Definition 5.5. For u,w ∈W , we say u ≺ w if and only if

(`(u),−u(n),−u(n− 1), · · · ,−u(1)) < (`(w),−w(n),−w(n− 1), · · · ,−w(1))

with respect to the lexicographic order. This defines a total order ≺ on Sn.

Lemma 5.6. Let w ∈ Sn \ {id}. Then all the permutations occurring on the right hand
side of the formula of Sq

w in Proposition 5.3 are strictly smaller than w with the order ≺.

Proof. Let u be as in Proposition 5.3, then u ≺ w since `(u) = `(w) − 1. For u l uthi, we
have `(w) = `(uthi) = `(u) + 1. By Lemma 5.2, we have w(j) = u(i) < u(j) = uthi(j).
Combining this with the property w(a) = u(a) = uthi(a) for a > j, we obtain uthi ≺ w.
Permutations in the quantum part are all of length smaller than `(w), and hence are strictly
smaller than w with respect to the total order ≺. �

5.2. Proof of Theorem 1.6. To achieve our aim, we first show that the pullback Schubert
classes ξw admit exactly the same transition equations in the quantum cohomology QH∗(X)
as that for Sq

w on the level of polynomials.

Proposition 5.7. With the same notation as in Proposition 5.3, in QH∗(X) we have

ξw = xiξ
u +

∑
uluthi

ξuthi +
∑

ulquthi

qhiξ
uthi −

∑
ulqutik

qikξ
utik .
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Proof. Recall w = utij and that i is the last descent of w, so i ≤ n− 1 and xi = ξsi − ξsi−1 .
We compare the two quantum Monk-Chevalley formulas

ξsi−1 ? ξu =
∑

uli−1utab≤w0sn−1

ξutab +
∑

ulqi−1utck with k<n

ξutckqck +
∑

ulutanlqi−1utantcn≤w0sn−1

ξutantcnqcn − 0,

ξsi ? ξu =
∑

uliutab≤w0sn−1

ξutab +
∑

ulqiutck with k<n

ξutckqck +
∑

ulutanlqiutantcn≤w0sn−1

ξutantcnqcn − δi,n−1qn−1ξ
u.

The classical part follows from the same argument as in Proposition 5.3, where the
constraint uhi ≤ w0sn−1 is redundant by Lemma 5.4. Again note that if c ≤ i− 1 < i < k,
then ulq

i−1 utck implies ulq
i utck. Therefore the difference of the sum involving quantum

parts in the two quantum products happens exactly when either k = i in the first product
or c = i in the second product. The part of k = i in the first product is exactly the second
sum in the equation for ξw in the statement. It remains to show that the rest is given by
c = i part in ξsi ? ξu together with δi,n−1qn−1ξ

u, namely to show

(5.4)
∑

ulqutik

ξutikqik =
∑

ulqutik with k<n

ξutikqik +
∑

ulutanlqiutantin≤w0sn−1

ξutantinqin − δi,n−1qn−1ξ
u.

Denote by RHS (resp. LHS) the right (resp. left) hand side of the above equation to prove.

(1) Case i = n − 1. Then j = n, the sum in LHS is empty (otherwise we would have
u lq utik = utn−1,n = w, contradicting u l w), and the first sum in RHS is empty
as well. The constraints

ul utan lq utantin

imply a = n − 1 by Lemma 5.2(Otherwise, a < n − 1 = i, then utan(i) = u(i) <
u(a) = utan(n) ). Then we have utantcn = u, which automatically satisfies u ≤
w0sn−1 by Lemma 5.4. Hence, RHS = 0 + ξuqn−1 − ξuqn−1 = 0 = LHS.

(2) Case i < n− 1. Then δi,n−1 = 0.
For u lq utik on the LHS, we have k 6= j since u l utij = w. By Lemma 5.2,

w(k) = u(k) < u(i) = w(j). Since i is the last descent, we have k < j. In particular,
k < n, thus the LHS is equal to the first sum of the RHS. It remains to show that
the second sum on the RHS is zero. Suppose we have u l utan lq

i utantin. By the
choice of i, j, u also has no descent after i. We also note that j is the minimal integer
greater than i that satisfies u(i) < u(j). These two properties will be used over and
over again in the following argument. If i < a < n− 1, then u(n− 1) ∈ [u(a), u(n)],
contradicting with Lemma 5.2. Therefore, either a = n − 1 or a ≤ i. If a = n − 1,
by Lemma 5.2, we have u(n − 1) = utan(n) < utan(i) = u(i), so j = n. Then
utan(n − 1) = u(n) = u(j) > u(i) = utan(i). Then utan(n − 1) /∈ [utan(n), utan(i)],
contradicting Lemma 5.2. If a = i, then from u l utan and Lemma 5.2, we have
j = n. Then utan(n − 1) = u(n − 1) < u(i) = utan(n), Then utan(n − 1) /∈
[utan(n), utan(i)], contradicting Lemma 5.2. If a < i, then by Lemma 5.2, we have
utan(n − 1) = u(n − 1) < u(a) = utan(n), Then utan(n − 1) /∈ [utan(n), utan(i)],
contradicting Lemma 5.2. �



26 CHANGZHENG LI, JIAYU SONG, RUI XIONG, AND MINGZHI YANG

Proof of Theorem 1.6. By (the proof of) Theorem 1.2, the canonical ring isomorphism

Ψq : QH∗(X,Z) −→ Z[x1, · · · , xn, q1, · · · , qn−1]
/(
Ên1 , · · · , Ênn−1, E

n−1
n−1

)
.

satisfies Ψq(ξ
i) = [x1 + x2 + · · · + xi] for 1 ≤ i ≤ n − 1. Namely Ψq(ξ

w) = [Sq
w] holds for

all w ∈ Sn with `(w) = 1 (which all satisfy w ≤ w0sn−1).
By (2.1), w ≤ w0sn−1 holds if and only if w(n) 6= 1. By Proposition 5.7, Lemma 5.4

and Lemma 5.6, every ξw with w(n) 6= 1 can be written as a Z[q]-linear combination
of classes ξv with v ≺ w and v(n) 6= 1. By Proposition 5.3, Sq

w can also be written
as exactly the same Z[q]-linear combination of Sq

v on the level of polynomials. Hence,
the statement follows immediately from the mathematical induction on the totally-ordered
subset ({w}w≤w0sn−1 ,≺). �
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