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ABSTRACT. We propose to study the quantum Schubert calculus for Schubert varieties,
and investigate the smooth Schubert divisors X of the complete flag variety F¢,. We
provide a Borel-type ring presentation of the quantum cohomology of X. We derive
the quantum Chevalley formula for X by geometric arguments. We also show that the
quantum Schubert polynomials for X are the same as that for F'¢,, introduced by Fomin,
Gelfand and Postnikov.

1. INTRODUCTION

Schubert problems, which count the number of geometric objects with given geometric
constraints, are fundamental to enumerative geometry. Here the central objects are flag
varieties G/P together with their Schubert subvarieties. The classical Schubert calculus,
in modern language, is about the study of the integral cohomology ring H*(G/P,Z). The
Schubert classes 0" of the Schubert varieties form an additive basis of H*(G/P,Z). A
profound understanding of the cohomology ring mainly consists of the following three parts:

(1) A ring representation of the form H*(G/P,Z) = Z[x]/I.

(2) A (manifestly positive) formula of the Schubert constants c;;
otUao" =), ¢,0".

(3) A Schubert polynomial &,(x) € Z[x] that represents the Schubert class ¢* in the
aforementioned ring presentation Z[x]/I.

in the cup product

(%

We refer to the very nice article [BGP25] and the references therein for the progress of
classical Schubert calculus with an emphasis on the case G = SL(n,C). With the Gromov-
Witten theory introduced in 1990s, the classical cohomology H*(G/P,Z) can be deformed
to the integral (small) quantum cohomology ring QH*(G/P,Z) = (H*(G/P,Z) ® Z[q], *),
by incorporating 3-pointed, gezus-0 Gromov-Witten invariants. In particular, we can write
o * oV = Zmd Ny ;)dawqd, where N, D= Cuy- There have been extensive studies of
the quantum Schubert calculus, namely of the quantum versions of the above (1)-(3) for
QH*(G/P,Z) (see e.g. the survey [LL17] and the references therein).

All the Schubert varieties, including flag varieties as special cases, have CW complex
structures by Schubert cells. In return, the integral cohomology of a Schubert variety X,
inside G/ P is torsion free, and has an additive basis of Schubert classes indexed by the
Weyl group elements u satisfying v < w with respect to the Bruhat order.

Question 1.1. What is the (extended) Schubert calculus for Schubert varieties?

The natural inclusion ¢ : X,, < G/P induces a surjective ring homomorphism ¢* :
H*(G/P,Z) — H*(Xw,Z) with kernel I,, = >, ., 0". Hence, the (extended) classical
1
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Schubert calculus for Schubert varieties is trivial in the sense that all points (1)-(3) can be
reduced to that for the flag varieties, with the price that the ring presentation H*(X,,,Z) =
H*(G/P,Z)/I, being not good enough. We refer to [ALP92,GR02,DMRO7,RWY11,DY?24]
for the study of the ring presentation of the cohomology of Schubert varieties.

The (extended) quantum Schubert calculus for Schubert varieties is highly nontrivial.
First of all, we have to restrict to the smooth ones, since there was no Gromov-Witten the-
ory for singular (Schubert) varieties yet. To our knowledge, there have been very few pio-
neer studies [Pec13MS19|HKLS25] in different context. The odd symplectic Grassmannian
IG(k,2n+ 1) is a smooth Schubert variety of the symplectic Grassmannian IG(k,2n + 2),
a flag variety G/P with G = Sp(2n,C). In [Pecl3|, Pech studied the case k = 2, which
happens to be a general hyperplane section of the complex Grassmannian Gr(2,2n + 1).
She did a relatively complete quantum Schubert calculus for a non-homogeneous Schubert
variety for the first time, by providing a ring presentation, the quantum Pieri formula (a
partial formula for the quantum version of point (2), see also |[GLLX25|), and the quan-
tum Giambelli formula (i.e. the quantum version of (3)). In [MS19], Mihalcea and Shifler
provided the (equivariant) quantum Chevally formula for IG(k,2n + 1) by using the curve
neighborhood technique [BM15]. In [HKLS25|, Hu, Ke, Li and Song provided a ring pre-
sentation for the quantum cohomology of the blowup of Gr(2,n) along Gr(2,n — 1) for the
purpose of studying mirror symmetry, which happens to be a Schubert divisor in a two-step
flag variety. The special case when n = 3 is the blowup of P? at point, which has been
well studied much earlier. Despite being a very natural extension from the viewpoint of
Schubert calculus, the quantum Schubert calculus for smooth non-homogeneous varieties is
still largely uncharted territory, with many aspects awaiting exploration.

The complete flag variety F'¢,, :={V1 <--- <V,_1 <C"|dimV; =i,V1 < i< n} is the
quotient of G = SL(n,C) by the Borel subgroup of upper tiangular matrices in G. Denote
by F, the standard complete flag. Fach permutation w € S,, labels a Schubert variety X,,
of dimension ¢(w) defined by ranking condition of the form X,, = {V, | dim(V; N F}) >
m(i, j,w), Vi, j}. Note that the permutation wg = n - - - 21 in one-line notation is the longest
element in Sy, and s; := (i,7 + 1), i < n, denote the simple transpositions. In this paper,
we focus on the Schubert divisor

X = Xwosn_l = {‘/o | I < Vn—l}'

Note X = X,,s,, while all the other Schubert divisors X,,s,, 2 < i < n — 2, are singular.
Denote the following n x n matrices

r1 Q1 T q1
-1 22 @ -1 z2 @
-1 Tn—2 (4n—2 -1 Tn—2 (dn—2 —Qgn—1G9n—2
=1 ZTn1 gn -1 ZTpn1 —Gn-1Tn
—1 T -1 Ty

as Mpy, and My, .  respectively. Write

1

(1.1) det(In + AMpy,) = > EPX, det(In + AMx,,, ) =Y EN.
=0 =0
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The coefficients E}, EZ” may be viewed as quantizations of the ¢-th elementary symmetric
polynomial e}’ (x1, - ,z,). Moreover, we notice £} = E} and E}} = (zy —qn_l)En 1, while
the difference between E‘f and E is a bit involved for 1 < ¢ < n. As shown by Givental
and Kim [GK95|, there is a canonical ring isomorphism

(I)q : QH*(FK,Z,Z) — Z[J)l, s TpsqL, 7qn—1]/(E?a e 7E771L)

N 2z, xn]

Its classical limit at q = 0 gives Borel’s ring isomorphism ® : H*(F¢,,Z) —

(617 : 6%)
[Bob3|, where €' = el'(x) denotes the i-th elementary symmetric polynomial in variables
1, - ,ZTp. As the first main result of this paper, we obtain a similar quantum ring pre-

sentation for X.

Theorem 1.2 (Borel-type ring presentation). There is a canonical ring isomorphism

\IIQQH*(sz) _>Z[x17"' sy Ty 41y 7QR—1]/(A?7"' n— 17En 1)

In particular, we obtain the canonical ring isomorphism ¥ : H*(X,Z) = Z[ml—m’ﬁl,l
’ ’ el en 16 1)

in |[GR0O2,RWY11] by taking the classical limit at ¢ = 0. By “canonical” above, we
mean that z; represents the first Chern class of a specific tautological line bundle (see
[Equation (2.8)|for F'¢,, and [Equation (2.10)| for X)

For any u € Sy, the Schubert class o* in H2¢( (F Z) is given by the Poincaré dual of
the homology class [Xuyu] in Hog(wy)—26(u) (Fln; Z). The pullback Schubert classes {&" :=
(™) bu<wos,_, form an additive basis of H*(X,Z), and the divisor classes £%’s generate
QH*(X,Z) as a Z|q]-algebra. Whenever referring to a transposition ¢;; = (¢,j), we always
assume i < j. We say u <j uty; (resp. u <] ut;;) in the (quantum) k-Bruhat order, if
both i < k < j and {(ut;;) = £(u) + 1 (resp. £(ut;;) = (u) — £(t;;)) hold. As the second
main result of this paper, we obtain the following quantum Monk-Chevalley formula, in
analogy with the quantum Monk’s formula for QH*(F'¢,,, Z) [FGP97] or more generally the
quantum Chevalley formula for QH*(G/P,Z) [FWO04]. It is a special case of the quantum
version of point (2) for X but sufficient to determine the all the structure coefficients in
principle.

Theorem 1.3 (Quantum Monk-Chevalley formula). Let 1 < k <n —1 and u € S, with
u < wosp—1. In QH*(X,Z), we have

EFxg =) M 4y eMabgy gy + Y €% g1 — Sk n-1€"dn1,

where the first sum is over u <puty < wosp—1, the second sum is over u<Z uty, with b < n,
and the third sum is over (w,a) that satisfies wtqy, <z w and u <,_1 Wtgy € Sp.

By [Remark 4.12] the permutation w in the above theorem does satisfy w < wgsp—1, so does
for uty, in the second sum.

Equivalently, the quantum Monk-Chevalley formula for X can be read off directly from
that for F'4,: the first two sums are the cut-off of the quantum product % x g%, and the
third sum is about the quantum terms involving ¢,—; and appearing in 0% % (o% U g®n~1).
We emphasize that the minus sign in the fourth part is necessary and has a geometric
explanation, which gives rise to a key ingredient in our geometric arguments. Intuitively, a
smooth curve with two marked points of degree d with d,,_1 = 1 lies on X if and only if the
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two marked points are both on X. For stable maps, an additional correction term must be
taken into consideration, due to the presence of nodal curves. The fourth part may or may
not be canceled by the third part.

Example 1.4. For the Schubert divisor Xy, s, of F44, we have

£93%2 % €3 = 73923 L 0 + (3€7°? 4 qagz) — q3€%? = €732 + qoqs;
65153 *§53 _ 5825183 + 0 4 (q3§8182 + q3§8251) _ q3§s183_

To show the vanishing of Gromov-Witten invariants of higher degrees, we mainly use the
curve neighborhood technique developed by Buch and Mihalcea [BM15], with a special
treatment by more involved geometric arguments for degrees of the form (0,---,0,1,---,1,2).

Remark 1.5. We anticipate that our approach to proving[Theorem 1.3 could be applied to
more general cases and in the equivariant quantum cohomology setting. For instance, we

can already obtain the equivariant quantum Monk-Chevalley formula for X immediately.
Indeed, our arguments are purely geometrical and all the involved morphisms are torus-
equivariant. As a direct consequence of our proof, holds equivariantly by simply
treating Ny 4 as equivariant quantum Schubert structure constants for F{,. Therefore, the

equivariant quantum extension of[Theorem 1.3 is simply obtained by adding into it the single
term (w — u(wg))E" , where w;’s denote the fundamental weights.

The Schubert polynimals &,, € Z[z1,- -+ ,zy], w € S, were introduced by Lascoux and
Schiitzenberger [LS82|, which satisfy ®(c") = [S,,] in Borel’s presentation of H*(F{,,Z).
1.2 L on—1

Moreover, every &,, admits a unique linear expansion &, = Y ;. 4, ,e; €5 e .

In [FGP97|, Fomin, Gelfand and Postnikov introduced the quantum Schubert polynomial
6l = Zail...in_lEilE% !

tn—1"

They showed that ®,(c™) = [&7,] under the aforementioned canonical ring isomorphism @,
for QH*(F{y,7). As the third main result of this paper, we obtain the following. Recall

the ring isomorphism V¥, in

Theorem 1.6 (Quantum Schubert polynomials). For any w < wgS,—1, we have
Ue(€7) = [GL]-

It is the key ingredient in our proof that we use a transition equation (in [Proposition 5.3])
for quantum Schubert polynomials. This says that quantum Schubert polynomials can be
completely determined by a very small part of the quantum Monk-Chevalley formula. This
powerful idea was noticed and applied early in [LOTRZ25, Theorem 4 and Remark 3.15]
in the study of quantum double Schubert polynomials for F'/,,.

On the one hand, even though the quantum (resp. classical) Schubert polynomial of the
class £“ for X is the same as that for the class ¢% for F'4,, the situation for the quantum
cohomology is much more non-trivial. As we can already see from the expansion
of 676 for X is not a cut-off from that for F¢,. Consequently, the naive linear map
o = (o) = &* cannot give rise to a ring homomorphism QH*(F¢,,7) — QH*(X,Z),
in contract to the classical situation.

On the other hand, we do be able to obtain a ring homomorphism as follows.
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Theorem 1.7 (Quantum Lefschetz hyperplane principle). There is a ring homomorphism
g QH*(Fy,Z) — QH*(X,Z), defined by 0 — &% and g; — gq; for 1 <i<n—2, and

oI £ gy, Gt = Gue1 €

The above theorem can be viewed as a precise example of the new formulation of quantum
Lefschetz hyperplane principle by Galkin and Iritani [GI], see also [GLLX25| Proposition
1.10]. Tt exhibits a surprising functoriality of quantum cohomology with respect to the
inclusion ¢ : X < F¥{, of the hypersurface X, which is lacking in general.

The quantum Schubert calculus for Schubert varieties is also of great importance beyond
the scope of enumerative geometry. A profound insight, due to Dale Peterson [Pet97], states
that the spectrum of the quantum cohomology ring QH*(G/P) = QH*(G/P,Z) ®z C for
all P can be assembled into the Peterson variety in the Langlands dual complete flag
variety (see [Rie03/Chow22]). Moreover, each Peterson strata corresponds to QH*(G/P)
for some P, and arises from the critical points of a holomorphic function defined on an
open Richardson variety by Rietsch [Rie08|. In the forthcoming work |[LRY]|, Li, Rietsch
and Yang define a holomorphic function for any (possibly singular) Schubert variety, and
propose an extended Peterson program, generalizing the framework for flag varieties. Our
current paper was strongly motivated by one conjecture in the extended Peterson program
that the quantum cohomology ring of a smooth Fano Schubert variety should be isomorphic
to the Jacobi ring of the corresponding holomorphic function defined therein. In fact, the
ring presentation in[ 1.2 was first predicted in [LRY] in the wider Peterson program initiated
there, making our proof a bit easier for having known the expectation in advance. Our
will further be applied there, serving as the first important supporting evidence to Peterson
program. In conclusion, we would raise our arms and shout:

It is the right time to develop quantum Schubert calculus for smooth Schubert varieties
from various perspectives!

This paper is organized as follows. In Section 2, we introduce necessary background.
In Section 3, we derive the ring presentation of QH*(X,Z) by investigating the quantum
differential equations. In Section 4, we provide the quantum Monk-Chevalley formula, by
investigating the moduli space of stable maps of certain degrees and using curve neigh-
borhood technique for higher degrees. Finally in Section 5, we show that the quantum
Schubert polynomials for X are the same as that for F/,,, by using induction based on a
transition equation for quantum Schubert polynomials.

Acknowledgements. The authors would like to thank Ki Fung Chan, Neil. J.Y. Fan,
Hua-Zhong Ke, Tuong Le, Leonardo C. Mihalcea and Konstanze Rietsch and for helpful
discussions. C. Li is supported by the National Key R & D Program of China No. 2023Y-
FA1009801 and by NSFC Grant 12271529.

2. NOTATIONS

We review some background, and refer to [BB05, GR02,/CK99| for more details.
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2.1. Combinatorics of S,. The symmetric group S,, is generated by simple reflections
si = (i,i+1), 1 <1i < n. Every element w € S,, can be denoted as w(1) - - -w(n) in one-line
notation, and is of length ¢(w) that counts the inversion set {(i,7) | i < j, w(i) > w(j)}.
The (unique) longest element in S, is given by wg := n---21. For any permutation w, we
have {(wow) = £(wqy) — £(w).

Whenever referring to a transposition ¢, := (a,b), we always assume a < b in this paper.
Let u,w € Sp,. We say u<<w (i.e. u is covered by w), if there exists t4, such that w = uty
and f(w) = £(u) + 1. Then u < w in the Bruhat order, if u can be transformed into w by a
series of transpositions ¢;; that each increase the inversion number by 1. Note that u < w

holds if and only if for any 1 < j < n, the increasingly sorted list of u(1),--- ,u(j) is less
than or equal to that of w(1),--- ,w(j) in the usual partial order. In particular, we have
(2.1) u<wosp—1 =n---4312 <= u(n) # L.

Note £(tqp) = 2b — 2a — 1. The quantum k-Bruhat cover < is defined by
u<?uty, ifand only if (utep) = €(u) — L(tap).
For 1 <k < n, we can further define the (quantum) k-Bruhat cover by
(2.2) u <puty if and only if L(uty) =£4(u) +1 and a < k < b;
(2.3) u <] uty, if and only if L(ute) = (u) — l(te) and a < k < b.
2.2. Schubert varieties of F/,. Consider the complete flag variety
Ft,={N<---<V,1 <C"|dimV; =,V 1<i<n}.

Let Fy € F{, be the standard complete flag in C". For any permutation w € .S,,, we define
the Schubert cell X, C F'¢,, (associated to F,) by the following rank conditions.

Xy = {Ve € Ftp| dim(V, N Fy) = #{k € Z>olk < p,w(k) < ¢},¥V 1 <p, g <n}.
Then X, = C!®) and Xo N Xy =0 for any u # w. The Schubert variety X,, is given by
Xy = X5 = {Va € Fo| dim(V, N Fy) > t{k € Zsolk < p,w(k) < ¢}V 1<p,q <n},
and admits a cell decomposition by Schubert cells (with respect to the Bruhat orders):
(2.4) Xo=|]X;
u<w

In particular, F'4,, is the (biggest) Schubert variety X,,,. The Schubert divisors are given
by Xys;, 1 <4 < n —1. Throughout this paper, we will focus on the Schubert divisor
Xuwos,_1, whose defining rank conditions can be reduced to the single one:

(2.5) X = Xw08n71 = {V. S Fﬁn’Fl C Vn—l}‘

Let pr : F¢,, — Gr(n — 1,n) be the natural projection that sends V4 to V,,—1. Then the
divisor X can be viewed as the zero locus of a section of the line bundle over F/,,,

(26) ﬁwn_1 = pT*OGr(nfl,n)(l)‘

We notice that X,,s; = Xuys,_, i smooth, isomorphic to an F'¢,,_1-bundle over Pn—2.
while X,,s,’s are all singular for 1 <7 <n —1.
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2.2.1. Topology of F¥,. For w € S,, denote by o € H?W)(F(, 7) the Schubert class
defined by the Poincaré dual of the homology class [Xwgw] € Hag(wow) (Fln,Z). We have

(O’wou,O'w) — /FE oot | g% = <[Xu]7o'w> = 5u,w-

Here (-, -) denotes the Poincaré pairing for F'¢,,, and (-,-) (resp. d,,,) denote the Kronecker

pairing (resp. symbol). It follows from that H*(F'ly,Z) = Dcs, L.

Denote the i-th elementary symmetric polynomial in variables xq,--- ,z, as
(2.7) el = e (xy,- - ,Tp).
The following result was due to Borel [Bo53].

Proposition 2.1. There is a canonical ring isomorphism

®: H*(Fln,Z) — Llwy,xa. -+ 0] /(€] €5, ep) .

’r n

Denote Vp = {0} and V,, = C". Let S; be the i-th tautological subbundle of F'¢,, 0 < i <mn,
namely the fiber of S; at a point V, € F¢, is given by the vector space V;. By “canonical”
in the above proposition, we mean

(2.8) o ([z1]) = e1((Si/Si—1)") € HX(Ft,, ).

2.2.2. Topology of X. It also follows from the cell decomposition [Fquation (2.4)| that

H*(X,Z) is torsion free and has an additive basis { PD([Xw]) }w<wosn_1- Let {€Y w<wosn_ 1

denote the dual basis with respect to Poincaré pairing, namely (PD([X,]), &%) = ([X.], V) =
Ou,w for any u, w < wosp—1. Induced from the natural inclusion map ¢ : X — F/,,, we have

a surjective ring homomorphism

W if w < wsn_
(2.9) L HA (Pl Z) — HY(X,Z): (o) =45 0 1T WS wosn-1,
0, otherwise.

We therefore call £*’s the pullback Schubert classes. Moreover, the following ring presen-
tation was obtained in |[GRO2,RWY11].

Proposition 2.2. There is a canonical ring isomorphism

U H (X, Z) — Zlxy, g+ an) [ (el €5, el el
Here by “canonical”, we mean
(2.10) U H[zi]) = a1 ((*Si/*Si1)Y) € HA(X, 7).

2.3. Quantum cohomology. To simplify the descriptions, we only review the necessary
notions for Y € {F¥,, X}, which is Fano with the first Chern class

2651 4+ 20°2 + -+ 4 25502 4 2551 if Y = Ff
211) 61():{0+0+ + 2052 4 201 n

2651 4 2652 4. 4 DESN2 | ESn1 ifY =X.

(See [LRY25] for a criterion for a factorial Schubert variety of general Lie type being Fano,
as well as a formula of the first Chern class.) Uniformly denote by v* the cohomology class
o (resp. £“) labeled by an appropriate permutation w for Y = F'¢,, (resp. X).

Let Mg (Y,d) denote the moduli space of m-pointed, genus-0 stable maps (f : C —
Y;pty, -+ ,pt,,) of degree d € Hy(Y;Z). For each i, let ev; : Mo, (Y,d) — Y denote the
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i-th evaluation map, which sends (f : C' — Y;pt,--- ,pt,,) to f(pt;); let £; denote the i-th
universal cotangent line bundle on My ,, (Y, d). The gravitational Gromov-Witten invariant,
associated to nonnegative integers d; and cohomology classes v € H*(Y) = H*(Y,C), is
defined by

m

(Y™ Y T V= / H(Cl(ﬁi)di Uev; (7))

[MO,m (Y:d)]Vir i=1

Here [My (Y, d)]""" denotes the virtual fundamental class, which is of expected dimension
dimY +k—3+ [,c1(Y). In particular, Gromov-Witten invariants of degree d are vanishing
unless d belongs to the Mori cone NE(Y) = @?:_11 Z>0[Xs;] C Ha(Y,Z) of effective curve
classes of Y, which we simply denote as d > 0.

Let {vu}u € H*(Y) be the dual basis of {y“}, with respect to the Poincaré pairing.
The (small) quantum cohomology QH*(Y) = (H*(Y) ® C[q], *) is a C|q]-algebra with the
(small) quantum product defined by

(2.12) YRy = Y A e sar
deNE(Y) w

where ¢ := ¢ ... qz’fll for d = Z;:ll d;[X,] € NE(Y). This does happen for Y = F(,,
so does for Y = X as we will see. The quantum variable g; is of degree

1, if Y =X and j =n — 1 both hold,
(2.13) degq; = /[ ay)= { J

, 2, otherwise.
J

Whenever H*(Y,Z) ® Z[q] is closed under the quantum multiplication x, we call it the
integral quantum cohomology, simply denoted as QH*(Y,Z).

3. A BOREL-TYPE RING PRESENTATION OF QH*(X)
For Y € {F{,, X}, we denote

(3.1) H(Y) = H'(Y) ®c CIH[h Tla1, - anl-

In this section, we will introduce Givental’s .J-function JY (¢, k) of Y, viewed as an element
in H(Y'). We then prove the Borel-type ring presentation of QH*(X) in by
finding quantum differential equations that annihilate JX (¢, k).

At the beginning and the end of this section, we will identify both first Chern classes in
|[Equation (2.8){and [Equation (2.10)|as x; by abuse of notation. Then v% = 1 +x2+4-- -+ x;
for 1 <j <n—1. Denoting t =Y -, t;z; € H*(Y), we view the quantum variables ¢; as

Sj

functions on H2(Y), by letting ¢; = ef[XsJ']t = ¢i7%+1. Then it follows from §; ; = f[Xs.} y
that ¢% = elat — ea2itivi—yi—1) — ofy 22 (ti—tiv1)vi — qfl e qZ’fll‘

From [Proposition 3.3| until we will use *x; for X to distinguish the use
of z; for F4,, in order to avoid confusions. For any f(z,h) € H(F¥,), by f(t*z,h) we
mean the element in H(X) simply obtained from f(x, k) by replacing all z; with ¢*z;. In
particular, by ¢*t we mean ), ;0 x;.
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3.1. Givental’s J-function of X. The (small) quantum connection acts on the trivial
C*. Its derivations along the H?(Y)-direction are given by

H*(Y)-bundle over H2(Y) x
0 1 .
Va% ::a—tiJrﬁ@*, 1<i<n,
where h is the coordinate of C*. This quantum connection is flat, with the fundamental
(L(t, h)a) = 0 given by

solution L(t, k) to the quantum differential equation V
27

L(t,h)a:=e ha—|—zz _he

St = SV T e (L)'

_1
h QY

Y w d
P~ El)mw)o,g,cﬂ q°.

Here o € H*(Y'), and we take the expansion

Definition 3.1. The Givental’s (small) J-function of Y is deﬁned by
JY (1) = L(t, h)~ —ehzz Wy 02 1"

TY (to, 8, 1) = e % JY (8, ).

is the identity element in H*(Y').

Here 1 = ~4
Proposition 3.2 ( [BCKO08, Theorem 1]). The Givental’s J-function of F'¢,, is given by
TPt ) = er (> g a2, ), where
d>0
n—1
an — d’hidl ! x] — x.]/ + (dz"] B dlm]/)h
R S | 1

2 dii=di "=l 1<i<y <i
( H 1 [The ool — ) + kD) > 1
dij—d. = n- n
N (zj — T+ kh)/ 1<j<n—1 Hk 17 (@) + kh)

1<5<q
7= k=—00
1<] <i+1

Here the sum is over nonnegative integers d; j, with 1 < j <i<n —1

Proposition 3.3. The Givental’s J-function of X is given by

JX(t h) = e_an'_lIFZn,X(L*t, h),
where
, fd osn—1
I, x(t,h):=en (Z qdjjfn (z,h) H (—xn + kh))
a>0 k=1

0
with the contribution from the product [[ read off as multiplication by —x,, by convention
k=1
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Proof. Expanding Iry, x(t,h) with respect to the variable i, we obtain
1
Ipe, x(t 1) =1+ 3 (qnal+1t) + O(h7%).

Recall from that the smooth Schubert divisor X is realized as the zero locus

of a section of the line bundle L, , over F¥, with ¢;(Ls, ,) = 0°*' = —x,. By using
the quantum Lefschetz theorem |[CG07, Corollary 7] with respect to F'/,, and XIIl, we obtain
. Syt
T gnal + 0t h) = Tpg, x ('t h) = e O ¢? Ty (e, h) [ (= + k).
d>0 k=1
This implies JX (¢:*t, h) = efanilIan’X(L*t, h). O

3.2. Quantum differential equations of X. In this subsection, we will investigate quan-
tum differential equations of X, namely differential operators that annihilate JX (¢, h).
For any polynomial P(z,q) € Clz,q], we write it in the fixed order with respect to

L1, 3 Tny 41, 5 qn-1, namely
B

7'1’

with 2% = a;’f coegin g = qfl e qiﬁ’ll and the coefficients Afl € C. Take the conventions:

0 0 0 0

(3 ) at[l,m} ( atlv 8152 ) atm)v d[1,m] (qth7 .q )

where ¢; = e'i~ti+1 whenever it is treated as an operator. We then denote
0 0 0 dp_
P(haﬂ) =P(h 875[ ] 4[1,n— 1] ZA (ha?)“l 11"‘qn_11,

7’[7

and call the differential operator P(h%, q) the quantization of P(z,q).

Recall in [Equation (1.1)| that E]' = E*(x,q) are the coefficients of the expansion of the
polynomial det(l,, + AMpy,) = >, EI'A* in variable A, with respect to the matrix

r1r q1
-1 23 @
-1 3 @3

-1 zp1 g1
-1 Tn,

Proposition 3.4 ( |[GK95, Theorem 4]). Let D"(hgt, q) be the quantization of E(z,q).
Then D"(hat,q)(JFen(t, h)) =0 for any 1 <i <mn.

IThe function Iry, ,x in [CGOT7, Section 9] is a multiple of ours by & with the identification z = A.
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Definition 3.5. Viewing q; = €'i~%+1, we define the operators

T,S : H(Fl,) — H(X),

f on—1
Zq fa(z, h)) qufdbibh H (—t*xn + kh),
>0 d>0 k=1
Jpotn1-1
qufd (x,h)) qufd (t*x, h) H (=t*zp, + kh),
d>0 d>0 k=1

0 —1
where the product [] (resp. [] ) is read off as multiplication by —*x,, (resp. by 1).
k=1 k=1

Lemma 3.6. As operators that send H(F{y) to H(X), we have

0 0
h—,T| =[h—,S] = T| = S| =0
[ atk? ] [ atka ] [QZ7 ] [QZa ]
forany 1 <k <nand1l <l <n-—2. Moreover, we have
0 0
(3.3) —ha—tnoqn_lo’]r:']roqn_l, gn-1°T=Soq_1, T:—Soﬁa—tn,

as operators acting on /" Zdzo q? fa(z, h) with % =0 for 1 <i <mn held for any d.

Proof. Note that fd o1 = d,_1 and that the operators T and S are effected only by the
power dy,_1 of g,—1 = et»~17tn_ Thus the identities in the first half of the statement hold.

The last identity in follows directly from the definition of the operators
S,T.

dn—lfl
-1 0 T(e"" Y~ g fa(x, b)) =" Z ¢"ga(vz,h) [] (" + kh)
d>0 d= (dl, dp— l) dpn—121 k=1
:SOQTL—I et/hzqdfd(xah))7
d>0

where g4(t*z,h) = f, dg, dn_1—1)(t"2, h). Thus the second identity in [Equation (3.3)|
holds. Denoting ga(z,h) = fa; dg, d,_1—1)(T, ), we have

T o qn_l(et/h Z qdfd(m, h)) = T(et/h Z ngd(xa h))

a>0 d=(d1, dp—1)sdn_1>1
dn—1
=eh Z q%gq(*z, ) H (—t*zp + kh)
d=(d1, ,dn—1),dn—1>1 k=1
= —haioqn 10T t/thdfd x,h))
tn d>0

Therefore the first identity in [Equation (3.3) holds as well. 0
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Proposition 3.7. For the quantizations D?(h%, q1n—1)) of Ef(z,q),

0 0
DY h—— _ n—1) (1 *t,h)) =0
7 ( 5t[1,n}7q[l’n 2 (—h oL, =) o qn-1)IFe, x ("t, 1))
holds for 1 <i <n —1. Moreover, we have
(3.4) (—=Dp=1 + Dp=3an—1)(Ire, x (£, 7)) = 0

Proof. Tt follows directly from the definition that T(J¥% (¢, h)) = Iy, x(¢*t, h). By
[sition 3.4] and [Lemma 3.6| for 1 < i <n — 1, we obtain
0 0 0
DMl ne1)(T(JF (¢, 1)) =T o DI (h— Fen(t,h)) = 0.
1( 6t[1’n]aQ[1,n72]’( otn )Oq 1)( (‘] ( ) ))) 0 z( at,Q)(J ( ; )) 0
By |Lemma 3.6} all ¢, 8%c commute with T,S for 1 <1 <n—2,1 <k <n-—1. It follows that
[D¢ S| =0 and [D%,T] =0 for a € {n — 1,n — 2}. Using the identities in [Equation (3.3)]

we have
(= D2 4 DI 3g) (e, x (4, 1) = (— D2} + D=3, 1) (T(J 74 (1, )

— (80 (hg-) 0 Dy} +80 DY B0 gu 1) (I (1. 1)
=S(D™(JF(t,h))) =0
Here the third equality holds by noting Dy; = (fig;- 0 )D” 4 D)~ 2qn 1. O
Lemma 3.8. Both of the following identities hold.

dn—1

(hgg— + tn- DIt h) = e n (hg—)Tpe, x (Wt ),
8 * _9n— 8
(hoy = Q) TS (R = e R (hg e, x (4, )

Proof. By |Proposition 3.3L JX (¥t h) = efanileng(L*t, h). Then the statement follows
from direct calculations by Leibniz rule:

0

dn—1 _9n—-1 a

(hﬁtnq)(‘]x) = (—qn-1)e” " F Ipp, x+e h (hatn,l)(IM”’X}’
(hi)(‘]x) = quae” T Ipgx + e_%%(hi)(fm X)-
8t n- " atn ny

O

3.3. Proofs of [Theorem 1.2] and [Theorem 1.7 As shown in [ST97, Proposition 2.2]
by Siebert and Tian, the quantum cohomology QH*(X) of the Fano manifold X is of the
form Clz,q]/1,, provided that H*(X) = C[z]/I and I, is generated by the corresponding
quantized relations in QH*(X) of the generators of I for H*(X). Such relations can be
found out, by using the following well-known way due to Givental.

Proposition 3.9 ( |Gi96, Corollary 6.4]). If a differential operator P(h%, eli~tit1 h) sat-
isfies the equation P(h%,eti_ti“,h)(JY(t,h)) =0, then P(x,¢;,0) =0 in QH*(Y).
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We will first describe QH*(X), and then prove [Theorem 1.2| as a consequence, by using
[FP97, Proposition 11], which is a variation of [ST97, Proposition 2.2].

Theorem 3.10. The quantum cohomology ring of X is canonically given by

QH*(X) = (C[L*xlv T 7L*xna qi,--- 7Qn71] /(Xla X2,y Xn—1, *L) .
U"Tp — Gn—1
Here x; == x;j(¢t*x,q) are given by det(I, + AMx) = S o XiAD with respect to the matriz
@
-1 'z g
- -1 'z3 g3

-1 'zt g1 (= zn + 1)
-1 [/*wn — Qgn—1

Proof. By |[Proposition 3.7] and [Lemma 3.8] for any 1 < ¢ < n — 1, we have

0=c T Dy (=12 0 o) (Tt x)
= . J— _ o _
e A Ln},Q[Lnfz}’ ot,, An—1)\{Ft,, X
0 0 o o
:Dn h h n— hi — Qp— _ _ hi — Qp— i h h2 X
i Ot n—a)’ atn,lﬂf BT Gn—1,4q1,n-2]> (—( ot Gn-1) © qn-1) + hG1 + GQ))(J )

where G| = Gl(h%, q) and Gy = Gg(h%, q) are differential operators. Therefore by using
[Proposition 3.9 we have

* * *
D@n(L L1, ", Tn-2, L*.’L'n_]_ + dn—1, L*xn —A4n-1,491,92," - 7Qn—27Qn—l(_L T + Qn—l)) =0

in QH*(X). That is, x;(¢*x,q) = 0 holds in QH*(X).
The next two equalities follow directly from |Lemma 3.8 and [Proposition 3.7| respectively.

0 0 0
— D"} e D" 2(h—— . H)(JX
(= Dp=i 6t[1,n_2]7h5tn—1+q 1, q[n—2) T+ n_z(hat[l,n—Q]’q[17n_2])q 1+ hH)(J7Y)
dn—1 8 8
e 7 (=D Hh——r Di 3 (h—— n-1) (1 =
e (—Dri( at[l,n_l}’q[l’"ﬂ]wr n5( Bt[l,n_g]’q[l’"*z})q 1)(Ipe,,x) =0,

where Hy = H 1(71%, q) is a differential operator. Therefore, by |Proposition 3.9L in QH*(X)
we have

n—1/ x * * n—2/ * *
_En_l(L L1y " L Tpn-2,1L mn—l"‘Qn—h qi,- - 7qn—2)+En_2(L L1, 5l Tpn—2,4q1, " >Qn—2)Qn—1 =0.

The left hand side of the above equality equals —EZ:ll(L*xl, e T, q1, 00, Gn—2) and

hence equals —% by Laplace expansion of matrices. Then we are done by using

IProposition 2.2/ and [ST97, Proposition 2.2]. O

Now we are ready to show the ring presentation of the integral quantum cohomology

QH*(X,Z) in[Theorem 1.2| as well as the ring homomorphism in [Theorem 1.7
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Proof of [Theorem 1.3. Abusing the notation for t*z; and x;, we notice Mx = AMx A~"
with A = I, + ¢n—1Bn—1,n, Where B,,_1,, is the matrix with 1 in the (n — 1,n)-entry and

zeros elsewhere. Hence, the matrices My and My have the same characteristic polyno-

mial, implying E’f = x; for all 1 < ¢ < n. Again we note %fﬁ = Eg:ll Thus all
EY, - ,Eﬁfl,Egill vanish in QH*(X) = QH*(X,Z) ® C, so do in QH*(X,Z). Their
evaluations at ¢ = 0 give the ideal I = (ef,--- ,egfl,eﬁj), providing the ring presen-

tation H*(X,Z) = Z[x1,--- ,x,])/I by |[Proposition 2.2 Therefore the statement follows
from [FP97, Proposition 11]. O

Proof of [Theorem 1.7. Define L:;(:ni) = z; and Lj;(qi) = ¢q; for 1 <i < n — 2. Define

* *

Lq($n—1) = Tpn-1+qn-1, Lq(xn) =Tn — 4n-1, LZ(Qn—l) = —(Qn-1Tn + qrzy,—l'

This induces a ring homomorphism ¢} : Z[z, q] — Z[z, q] with

* .
M
tg(Ei'(x,q)) = Ei' (1, n—2s tg(n1), 0q(Tn), 41, -+ s Gn2, 1y (Gn-1)) = Xi(@, q)
for all 1 < i <n. That is, 13 (E]'(z,q)) = EP(x,q) for 1 <i<n—1, and L (En(z,q)) =
(2n — @n-1)E""1(x,q) by the proof of [Theorem 1.2, Hence it further induces a ring homo-

morphism

Z Z

k g [, 4] :
(Elv"'aE;zl) (E?’."VEH En:l)

n—1""n

i QHY(Fl,,7) = = QH*(X,Z).

Hence, we are done, by noting 0% = [x1+- - -+;] on the left hand side, and &' = [z1+- - -+
on the right hand side. (In particular, {571 = [—x,].) O
4. QUANTUM MONK-CHEVALLEY FORMULA FOR X

Let Y € {Fl,, X}. By d we always mean d = (dy,--- ,dy_1) = S.1 di[Xs,] € Ha(Y,Z).
For 1 < a < b < n, we denote

b—1
(4'1) Qab -= Z di[Xsi]v Qab = QaGat1 -~ Qp—1 = ™.
i=a

The following quantum Monk’s formula for F,, was proved in [FGP97, Theorem 1.3] (see
[FW04] for the quantum Chevalley formula for general G/P), where <, (resp. <) denotes
the (quantum) r-Bruhat order defined in [Equation (2.2)| (resp. [Equation (2.3)]).

Proposition 4.1 (Quantum Monk’s formula). Foru € S, and 1 <r <n, in QH*(F¢,,7)

we have
O'ST*O'UZ E : O—Utab_|_ E : qckUUtCk-

u<rutgp u<tut g,
Since {¢"},, form an Z|g]-basis of QH*(F'¢,,Z), we can write

v u w,d d__w
o' *x0o" = E Ny g o™
w,d
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We further denote by N dgw

v uUu

, the coefficient of ¢%¢™ in the product o x (¢% U ¢%). In

particular if v = s, and d # 0, then by the quantum Monk’s formula, ¢% U o* is a sum of
distinct ¢, which contribute nonzero quantum Schubert structure constants (equal to 1)
only if d = agp and 4 = wty,. Therefore, the quantum Monk-Chevalley formula in the form
of is equivalent to the following description.

Theorem 4.2. Let 1 <r<n—1andu € S, withu < wysp—1. In QH*(X), we have
Eragt= N NP4+ Y ONDAE Y N )§ = g6
waosnfl dn—IZO dn 1=1

The constraint w < wgs,—1 is a prior required in the second and third sum of the formula

&% % £", but turns out to be redundant (see |[Remark 4.12)).

This section is devoted to a proof of the above theorem. We use the current form in
to indicate our approach that degree-d Gromov-Witten invariants of X with
dn—1 < 1 can be reduced that of F'/,,_1, and that the vanishing of those with d,,—; > 2 can
be confirmed.

4.1. Degree-d Gromov-Witten invariants with d,,_; < 1. In this subsection, we com-
pute Gromov-Witten invariants (3,7)g2,4 of X with d,—1 < 1.

4.1.1. Unobstructedness of moduli spaces. Recall the line bundle L,,, , over F'/,, defined in
(2.6)), the zero locus of a section of which defines the smooth Schubert divisor X.

Lemma 4.3. Let f : P — X be a morphism satisfying f«[P'] = d with d,,_1 < 1. Then we
have HY(P, f*Tx) = 0.

Proof. The exact sequence
0—=>Tx = Tpy,|x > E—0,
pulling back to P!, and then tensoring with Op1(—1), induces a long exact sequence:
= HO(PL, (f*B)(-1)) = H'(PY, (f*Tx)(=1)) = H' (B, (f* Tpe, |x)(=1)) = - .

Since Ty, is globally generated and vector bundles over P! are splitting, we have

(f*Tre,|x)(— @Opl —1)
with a; > 0 for all i. Thus HY(P!, (f*Try,|x)(—1)) = 0. On the other hand, (f*E)(—1) =
Op1(dy—1 — 1) with d,—1 < 1, which implies
(4.2) dim HY (P!, (f*Tx)(-1)) < 1.

Suppose (f*Tx)(—1) = @, Op1(b; — 1), implies all b; > 0 except at most one
bi, = —1. In other words, f*T'x = @, 4;, Op1 (b)) ®O(—1) with b; > 0 or f*Tx = P, Op1 (b;)
with b; > 0, which implies H(P!, f*Tx) = 0. O

Proposition 4.4. Letd > 0 withd,—1 < 1. Then the virtual fundamental class [Mo (X, d)]"*
coincides with the usual fundamental class [Mo (X, d)].
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Proof. Let ft : Mg p41(X,d) — Mo (X, d) be the forgetful morphism by forgetting the
last marked point (which is the universal curve over My (X, d) [BM96]). For any (f : C —
X;pt1, - ,ptr) € Mox(X,d), by using and following (the proof of) [FP97,
Lemma 10], we have H'(C, f*Tx) = 0. Therefore we have R'ft.ev; ;Tx = 0. Then by
[BeFa97, Proposition 7.3], [Mg (X, d)]"'" is the usual fundamental class [Mo (X, d)]. O

4.1.2. Computation of Gromov-Witten invariants with d,—1 = 1. In this subsection, we
always assume d > 0 with d,_; = 1. For a decomposition d = d’ + d”, we always require
both d’ > 0 and d” > 0. Recall the natural projection map pr : Ff,, — Gr(n—1,n) = P*~1.
Note that H := pr(X) is a hyperplane in P"~!.  The inclusion ¢ : X < F/, induces a
natural inclusion Mg (X, d) < Moa(F¥y,, t.d) denoted as ¢ by abuse of notation. Denote

A° = {(f : C = Flyn; pt1,pta) € Mo2(Fly,u.d) | f(pti) € X, pr(f(pt1)) # pr(f(pt2))};
B:= {(f :C — Fily; pty,pla) € Mo,z(anaL*d) | pr(f(pt1)) = pr(f(pt2)) € H}

Since dp,—1 = 1, pro f(C) is a line in P"~!, containing pr(f(pt1)),pr(f(pt2)). It follows
that f(C) C X for any stable map f in A°, as the line contains the two distinct points
pr(f(pt1)),pr(f(pt2)) in H has to lie in H. Note that A° is a Zariski open dense subset of

t(Mo2(X,d)). Thus for the evaluation maps ev; : Mo o(Fly, tsd) — Fi,, we have
(4.3) eop (X)) Nevy '(X) = AUB, with A:= A° = (Mg2(X,d)).

Here we note that Mo (X, d) is proper, so (Mo 2(X,d)) is closed in Mo o(Fly, txd).
Denote by X}, 4 = ekal(X) C Mo i (Fly,, t.d) the space of stable maps whose last marked
point is mapped to X. A stable map (f : C — F{,, pt1,pt2) in B is of the form

(1) C = Cy U Cq, where the marked points z1,zo are contained in Ci;
(2) f1 = flc, is a stable map to pr—!(p) for some p € H;
(3) f2 = flc, is a stable map to Fl,.

Actually, we can take C1 to be the union of components of C' which is maximal with respect
to (1) and (2). The the union of the remaining components Cs is connected since the image
pr(f(C)) is a line. As a result, B can be written as the following union, in analogy with
the boundary divisors of moduli space of stable maps (see e.g. [FP97, Section 6.2]).

(4.4) B = U Bd/,d”> with Bd/,d” = X37d/ X x Xl,d”-

d'+d'"=d
U —
al, =0

Here the the fiber product over X stands for the constraint fi(pt3) = fo(pt) € X for the
nodal point of C'. By direct calculations, we have

dim By g» = (ted', c1(Fy)) + dim X + (1,.d”, 1 (Fly,)) — 2 = (14d, c1(Fy)) + dim X — 2.
That is, B is of pure dimension. Note .4 and B are both of codimension 2 in Mg 2(F¥y, t.d).

Proposition 4.5. Let d > 0 with d,,_1 = 1. For u,w € S, with u,w < wysS,_1, we have

X — _1\F? _1\F?¢
<§u7£w>0727d — <O,u U US" 1’0.112 U US" 1>0,27L*d _ 5qd,qn_1 (O’u,O'w,O'S" 1>0’31710‘
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Proof. Note that the Schubert divisor X defines the Schubert class o*»-1 = PD([X]), and

ev; 1 (X) are divisors of Mg 2(F¥p,t«d). As discussed above, we have the decomposition

evy H(X)Nevy 1 (X) = Moa(X,d)U U a) X3, X x X1,4 with each irreducible component
of codimension 2 in Mg a(F¥y, t.d). Hence, we have

u Sp—1 W Sn—1\Fln
(c"Uo®=1t og¥Uo >0,2,L*d

= / evio" Uevso® Uevio® 1 Uevy o1
[MO 2(F£7L7L*d)}

:/ ) ) evio" Uevso®
levy " (X)Nevy ™ (X))

= / evio" Uevso® + Z / evio" Uevso®.
[Mo,2(X,d)]

(dd") X3 d/><Xx2 a']

The first term in the last equality is equal to

/ (evio" Uevyo®) = / evitfo" Uevyx o = (£, f“’>é{2’d.
[Mo,2(X,d))] [Mo,2(X,d)]

Note evy x evy : X3 ¢ xx X140 — X x X factors through

X
X3,d’ Xx Xl,d” i} X3,d’ ev1_8>1)2 X x X,

where ¢ is a fibration with generic fibers of dimension the same as that of the generic fiber
of the evaluation map Mo 1 (Fly,txd ) — Fi,, namely of dimension (t.d”, ¢;(Try, ))+1—3.
Hence, ¢« X3 0 Xx X1,47] = 0 unless (1xd”, c1(Tre,)) = 2, ie. d" = [Xs, ] = an—1n. In
this case, Mo 1(Flp,d") = Fe,, thus X3 4 xx X147 — X34 is of degree 1. Hence, we have

Z / ¢* o (evy X evy)*(c" K a®)
[X3,ar X x X7 gr]

/ evio" Uevso® =
[st,d’XXXLd”] (d’,d")

= / (evy x evy)*(c" R o®)
XBd’]

(d/ Qn—1 n

(@ ")

= Z / evio" Uevyo®™ Uevio® 1.
[Mo.3(Fls,tad’)]

(d'an—1,n

Recall that d],_; = 0. If d’ # 0, then by the divisor axiom, we have fMo S(Flgnd')] evjo" U
evzo Ueviosn=t = [, 0%t i g, €010 U evio™ = 0. Hence, the above sum is

nonzero only if d = a1, = d”, in which case we have

/ evio“Uevyo" = / evio“Uevso¥Uevso’n—t = (g% v, 05"*1>5§70.
(X3 ar X x X7 1] [Mo,3(F£3,0)]

Hence, the statement follows. O

(@ ")
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4.1.3. Computation of Gromov-Witten invariants with d,,_1 = 0. The analysis for d,_1 =0
is similar to but much simpler than that for d,_1 = 1.

Proposition 4.6. Let d > 0 with d,—1 = 0. For u,w € S, with u,w < wys,—1, we have
X n—1\Fln
(&, fw>0,2,d = (0", 0" Uo® 1>0,2,L*d'

Proof. For i € {1,2} and (f : C — Fén;pt1,pta) € ev; *(X) C Moa(Fln, t.d), we have
pro([f(C)]) = 0, so that pr(f(C)) consists of a point in P*~!.Moreover, f(pt1) = f(pt2) =
evi(f) € X. Tt follows that f(C) C X. Hence, ev; ' (X) = t(Mo2(X,d)) for any i € {1,2}.
Recall £* = 1*0® and note PD([ev; *(X)]) = evfo®—1. Hence, we have

<€u’ §w>()){2,d =

evit o Uevyt*a®

0,2(X,d)]

= / L (evio® Uevso®)

T\

:/ o evio" Uevyo"
[L(Mo,2(X,d))]

= / evio" Uevso® Uevyo® 1. O
[(Mo,2(Fln,txd)]

4.2. Vanishing of Gromov-Witten invariants with d,,_; > 2.

4.2.1. Vanishing by curve neighborhood technique. We use the curve neighborhood tech-
nique developed by Buch and Mihalcea [BM15], to show the vanishing of Gromov-Witten
invariants of degree d with d,,—1 > 2 and d # an + ap—1n-

Definition 4.7. Let d > 0 and u € Sy, which further satisfies u(n) # 1 for Y = X. The
curve neighborhood FZI/(XU) of Xy of degree d is a reduced subscheme of Y defined by

Ty (X.) = €U2(6U1_1(XU))-

The permutation z; € S, associated with d > 0 is defined by using the Heck product e
on S, as follows. Note

wes; — {wsi, if l(ws;) > (w),

w, otherwise.
. el .
Take a sequence (av,jy,Qiyjos -+, Qi) of maximal elements a;,;, = > 07— [Xs,,] with
respect to d; that is, each «; ;. is maximal in the sense «;, j, € A, = {ag | d — agp —

Sl i g, > 0} with g, — i, = max{b—a | au € A,}. Then k depends only on d, and
Zq = tij, ®tinj, ®---®t; 5, €Sy

is also independent of choices of the sequences of maximal elements with respect to d.

Proposition 4.8 ( [BM15, Theorem 5.1]). Fgen (Xu) = Xyezy, forue S, and d > 0.

Lemma 4.9. Let d > 0 with d,—1 > 2. Then we have {(zq) < (d,c1(Tx)) — 1, with equality
holding only if d = cip + apn—1,n for some <.
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Proof. Take a sequence (o, j,, Qiyjo, -+ » Qi j,, ) Of maximal elements with respect to d. With-
out loss of generality, we can assume j, = n for 1 < r < d,,—1 (by noting that the correspond-
ing transpositions of the form t., are disjoint with that of the form ., with b < n; otherwise,
b = ¢, and oy, would be a bigger element than aey,). Note £(tg) = 2b—2a — 1 = 2|ag| — 1,
Ctan ®tpn) < L(tan) +L(tpn) — 1 (since tqy (resp. tp,) has a reduced expression ending (resp.
starting) with s,_1). Hence, k > d,,—1 > 2, and we have

U(zq) < L(tino---o tidn,ln) + g(tidn,lﬂjdn,lﬂ e tikjk)

dn—1 k
<Y Mtipn) = (dna =D+ D> Utiy,)
r=1 T:dn71+1

=2/d —k— (dp—1—1)
< 2’d‘ —dp_1 — (dn—l — 1) = <d, Cl(Tx)> —dp—1+ 1.
Hence, ¢(zq) < (d,c1(Tx)) — 1, with equality holding only if ¥ = d,,—1 = 2. When the

equality holds, all the above inequalities are equalities. In particular, we have d = a;, +ajp
with ¢ < j, and E(tin . (Sn—ltjn) = E(tm Otjn) = E(tm) +£(t]’n) —1= é(tinsn—ltjn)- It follows
that sjsji1---sp—otjn is a reduced expression, where t;, = s,_15,-2-*-5j - Sp_25,—1 iS
reduced. Then s;js;q1 - sp—otjn(n —1) > sj5j41 - Sp—2tjn(n), resulting in a contraction
j>j+1lifj<n-—1. O

Proposition 4.10. Let d > 0 satisfy d,—1 > 2 and d # op + otp—1 for 1 <i <mn —1.
Then for any B,y € H*(X), we have (3,7)02,4 = 0.

Proof. Take any u,v € S, with u,v < wps,_1. Note Ff(Xu) C I’ge"(Xu) = Xyez, by
[Proposition 4.8] Since dp,—1 > 2 and d # a4y, + ap—1,n, by we have
dim T (Xy) < dim(Xyez,) = L(u ® 2q) < (u) + £(zq) < £(u) + (d,c1(Tx)) — 1.
Denote PD([X,]) as [X,] by abuse of notation. Using projection formula, we have

/ et (X)) U end([Xa]) = / (e2)- (07 (X)) N [Mo2(X, )] U [X, ],
[Mo 2 (X,d)]vir X

The cycle (evs)(ev;'([X,])) is supported on the curve neighborhood I'X(X,), and the
pushforward (ev2).(evi([Xu]) N [Mo2(X, d)]V'F) is non-zero only if the curve neighborhood
Fff (X,) has components of dimension

expdim M 2(X,d) — (dim X — £(u)) = (d,c1(Tx)) — 1 + £(u).

However, such components do not exist by the above estimation of dim 'y (X,,).

Hence, ([Xu], [Xu])o2d = f[ﬂo,g(x,d)]"" evy ([Xu]) U evs([X,]) = 0. Since {[Xu]} u<wosn
is a basis of H*(X,Z), the statement follows. O

4.2.2. Vanishing for specific degrees. It remains to show the vanishing of Gromov-Witten
invariants for d = oy, + ap—1,. We follow a similar idea to the approach to proving
[HKLS24, Lemma 3.7] and [HKLS25, Theorem 4.1 (b)].

Let us consider

P = Fgl,...,n—Q;nv Y = {V; eP | Fl - Vn—2}-
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We have a natural projection 7 : X — P by forgetting V,,_1. The fiber at a point of Y is
P!, while the fiber is a point at a point P\ Y. Note

dimP = dim X, dimY =dimP — 2.
Proposition 4.11. Letd = ajp+an—1,, wherel <i < n—1. Then for any b1, f2 € H*(X),
we have (f1, B2)0,2.4 = 0.
Proof. We discuss the degrees in two cases.

Case i = n — 1. In this case, m.d = 0. Therefore any stable map of degree d is contained
in a fiber of m at some point of Y. This defines a morphism from the moduli space to P
whose image is included in Y. Denoting ev = ev; X evy and by A the diagonal map, we
have

Moa(X,d) —== X x X

| |

P—2 ~PxP

The space HOQ(X ,d) has expected dimension
dim X +degyq? ; +2—-3=dimX + 1.

While the image of ev lies in the preimage of Y of X xp X, which is a P! x P'-bundle over
Y. Thus its dimension is

dimY +2=dimX — 2+ 2 =dim X.
Thus ev.[Ma(M,d)]"" = 0.

Case ¢ < n — 1. We have a similar commutative diagram

Moa(X,d) —== X x X

| oo

evp

M(),Q(P, TF*d) —— P xP.

Note that degy ajj+1 = 2 = degpmjjy1 for j < n—2, degyapon1 = 2 =
degp myat,—2n—1 — 1 and degy ap—1,, = 1. Hence, we have

exp dim Mo o(X,d) = dim X + degy ¢ +2 — 3,
exp dim Mg 2(P, m.d) = dim Mg 2(P, m.d) = exp dim Mo 2(X, d) — 1.

Moreover the map 7 cannot be surjective, since any stable map in the image has an extra
constrain that C intersects with Y. This reduces one more dimension:

dim(im(7)) < dim Mo (P, med) — 1.
As a result, ev,[Moa(X,d)]""" is supported over

(m x m) " H(im(evp o 7).
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Since the fibers of m x 7 have dimension at most 2, it has dimension at most

dim(im(evp o 7)) + 2 < dim(im 7) 4 2
< dim Mo 2(P, mid) — 1 + 2 = exp dim My 2(X, d).

If ev.[Mo2(X,d)]"" # 0, then the equalities must be achieved. Note that m x 7 has two-
dimensional fibers only at points of ¥ x Y, the equality holds only if evp restricts to a
morphism Z; — Zy of finite degree, where Z; is a component of im7 of codimension 1
in Mo 2(P,m.d) and Z is a component of im(evp) contained in Y x Y. By (the proof
of) [BCMP13, Lemma 3.8], Z3 is contained in a locally trivial fibration over Y7 C Y with
fiber Ff* 4(¥), where Y7 denotes the natural projection of Zs C Y x Y to the first factor.

By |[BM15, Theorem 5.1], the fiber Ff*d(y) is a Schubert variety of P, indexed by the

permutation zf*d = Za;, Sn—1 = tinSn—1. Thus is of dimension €(z77r)*d) =l(tin) — 1.

dim Z = dimY; + dimTZ ,(y) < dimY + €(t;) — 1 =dim X —2+2(n —i) — 1 — 1,
dim Z; = dim M 2(P,d) — 1 = expdim Mo 2(X,d) —2 =dim X +2(n —i) — 1 — 2,

resulting in a contradiction 0 = dim Zy — dim Z; < —1. O

4.3. Proof of [Theorem 4.2\ Note that {PD([X,])}, is the dual basis of {{"}, with
respect to the Poincaré pairing. Write PD([X,]) = 27 ay€7. Using the projection formula,

[X]

S = PD([Xu])ugw—/ L*(ZagUV)uL*UW—/ 3o U (o).
X5 Pl =

Note 14 (t*0™) = 1, (1*0? UEY) = 0¥ U PD([X]) = 0% Ug®—1. The permutation u varies in
Sy, with u(n) # 1. Hence,

St U = () 4 S o)
7

n(n)=1
‘We have
Erx gt =Y (7, 6" PD([Xu)))35,46" ¢
w,d
= Y (& PD(Xu))Fs 08"+ Y (€€ PD([Xu)))is at"d "
v<woSn—1 w<wosp—1,d#0

By [Proposition 4.10] and [Proposition 4.11} there are no ¢%terms in the second sum when-
ever d,—1 > 2. By the divisor axiom in Gromov-Witten theory, for d # 0 we have

<£ST7 £u7 [Xv]>5f37d = fd é'sr <£u’ Z’y a};g’y>0,27d'
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For d,_1 = 1, by |[Proposition 4.5 we have
r X d
/fs <§u7za}yu§7>o,2,dq
d gl
:/O'ST<UUUO—STL—1,ZGI$O,’YU0_5” o4 _/f "Oqd,q,-1(0 Za 07,0 ) g 51
d I
S
:/057-<0uU05n—1’Za$0vUgsn_1>ggndqd_/§sr5qdq 1%—1/ Za o U
d 1<y d "4 —

> Fen]

=(c*", 0" U1, Z by, (CON ggndq —/dﬁs’ﬂqd’qnlqnl /[Fé] V4 Z by (™) ™)

=(o™,0" Uo™ 1, (o)) >5§ndq €16
The last equality holds by noting f[ F, 01U (™Y =0 (since u(n) # 1)) and

- . d
<U$T7 ot U Usn_l? (0-7]) >5§ d Z<05T7 Uu? (Un)v>5g,d - Z Ngr,u =0

n n

for any permutation n with n(n) = 1. Indeed, by the quantum Monk’s formula for F,,
u <,—1 0 and for w € S, Nwd # 0 only if 4 <9 w = dtg, for some a (since d,—1 = 1).
i) If & < wpsp—1, then ¥ < @ < wpsp—1, i.e. W(n) # 1;
i) If @ € wosp—1, i.e. u(n) =1, then w(n) = tte,(n) = a(a) # a(n) = 1.
Thus the sum is vanishing for any n with n(n) = 1.
For d # 0 with d,,_; = 0, by [Proposition 4.6, we have

- X d_ r n—1\Fln d
/d§5 <fu7za$§y>o,2,dq —/das <g“,2a$<ﬂUas Do.2ad
ol
= {77, 0" Z ba(0™)")g 504"
Fén

= (o, 0", (" ) >03dq

The last equality holds again by noting (c%", a%, ()" >(}; g 1q? = 0 unless u <7 @, implying

w(n) # 1. Hence, we are done. O

Remark 4.12. The arquments i) and ii) in the above proof say that for any u,w € S, and
any a, k, the hypothesis u <p—1 Wtan <} w implies w(n) # 1, i.e. w < wosp—1.

5. QUANTUM SCHUBERT POLYNOMIALS FOR X

This section is devoted to a proof of namely for any w, the quantum
Schubert polynomial &%, of Fomin, Gelfand and Postnikov represents the pullback Schubert
class £“, under the canonical ring isomorphism in [I'heorem 1.2

Recall

Qab = GQaGa+1- - qp—1 for 1<a<b<n.
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5.1. Quantum Schubert polynomials. The classical Schubert polynomials were intro-
duced by Lascoux and Schiitzenberger |[LS82] by using the divided difference operators 9;’s
of Bernstein, Gelfand and Gelfand [BGGT73|. Precisely, for f = f(x1, -+ ,x,) € Z[x] and
w € Sy, denote wf = f(Ty-1(1), *+ , Ty-1(y)). Then G;f 1= % € Z[z], and the classcial

Schubert polynomials &,,(x) is recursively defined by
(5.1) Gy, = x?_1$§_2 R and Gy, = 0,6, whenver ((ws;) = {(w)— 1.

The following were shown in [LS82].

(1) ®(0") = [Sy(x)] under the canonical ring isomorphism @ in [Proposition 2.1]

(2) {ef e - '62;11 }o<ij<j form a Z-basis of Z[x].

Therefore, we have the linear expansion &, = Zail...in_1eillez22"‘6?,;11- In [FGP97|,
Fomin, Gelfand and Postnikov introduced the quantum Schubert polynomial
(5.2) &%= ai i, ELEL Bl

They also showed ®,(c") = [G4], under the canonical ring isomorphism in ®, |GK95],
(53) (I)q : QH*(FETHZ) — Z[$17 5y Tns 41, 7qn71]/(E?a T 7E;LL)
Recall the (quantum) r-Bruhat order <, (resp. <) defined in [Equation (2.2)| (resp.

[Equation (2.3)). The following is the quantum Monk’s formula on the level of polynomials,
proved in the first half of [FGP97, Theorem 7.1].

Proposition 5.1 (Quantum Monk’s formula). Foru € S,, and 1 < r < n, in Z[x] we have

Gg'r€51qﬁ = (.Tl ot xT)G% - Z 6'lq'ttab + Z QCkGZtck.
u<rutap u<tutey
Lemma 5.2. Letu,w € S, and1 <a <b<n.
(1) u<utyy if and only if u(a) < w(b) and for any a < ¢ < b, we have u(c) ¢ [u(a),u(d)].
(2) u<?utgy, if and only if u(a) > u(b) and for any a < ¢ < b, we have u(c) € [u(b),u(a)].
Proof. Note £(tu) = 2b — 2a — 1. The statement follows from a direct counting of the
number of inversions, which defines the length of a permutation. O

The next proposition is a special case of the second half of [FGP97, Theorem 7.1], with
a slightly more precise description than that in loc. cit.; see also [LOTRZ25, Theorem 4].

This special case will play a crucial role in our proof of[Theorem 1.6] A permutation w € S,
is said to have a descent at the k-th position if w(k + 1) < w(k).

Proposition 5.3 (Transition equation). Let w € S, \ {id}. Denote by i the last descent
position of w. Take the maximal j with w(j) < w(i). Then u := wt;; satisfies u < w, and
we have

va = .’1326% + Z GZt}Li + Z qhiGZthi - Z qlkGZtlk

u<<utp; u<dutp; u<dut;g

Proof. 1t follows directly from the definition that ¢ < j and that for any i < ¢ < j,
u(c) = w(c) < w(y) = u(i) (where the inequality holds since 7 is the last descent position).

Thus u < w by [Lemma 5.2 (1).
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By [Proposition 5.1, we compare the two quantum Monk’s formulas

(@r+az - +ai)8 = Y S+ D S,

u<<i—1utqp u<? jutep
. . q — § q E q
(xl + €2 + + xl)Gu - Gutab + quGUtCk'
u<;ulap u<<utcy,

Notice that if ¢ <i—1 < i < k, then u<!_, ut.y, implies u<]ut;. Therefore the difference
of the two products involving quantum parts happens exactly when either k = ¢ in the first
product or ¢ = 7 in the second product. Hence, the quantum part of the statement follows.

For the classical part, the same argument applies once we show that u < ut;;, implies
b = j. Indeed, assume u < uty for some b # j. Then w(j) = u(i) < u(b) = w(b) by
Since i is the last descent position of w, it follows that j < b. Furthermore,
we have u(j) = w(i) < w(b) = u(b), since j is maximal with respect to w(j) < w(i). But
then we would have i < j < b and u(i) < u(j) < u(b), contradicting with u < ut; by
[Lemma 5.21 O

Lemma 5.4. Let w € S, \ {id} with w(n) # 1. Then all the permutations v occurring on
the right hand side of the formula of &%, in|Proposition 5.4 satisfy v(n) # 1.

Proof. With the same notation in [Proposition 5.3 if v = u = wt;;, then u(n) > u(j) >
u(i) > 1. If v = utp;, then v(n) = u(n) # 1 by noting ¢ < n. It remains to discuss the case

v = ut;. Since u <? ut;, by u(k) < u(i) = w(y), so k < j since i is the last

descent postion. In particuar, k # n. Thus, v(n) = u(n) # 1. O

Definition 5.5. For u,w € W, we say u < w if and only if
(£(u), —u(n), —u(n = 1),---, —u(1)) < ({(w), —w(n), —w(n —1),- -+, —w(1))
with respect to the lexicographic order. This defines a total order < on S,.

Lemma 5.6. Let w € Sy, \ {id}. Then all the permutations occurring on the right hand
side of the formula of &%, in|Proposition 5.5 are strictly smaller than w with the order <.

Proof. Let u be as in [Proposition 5.3 then u < w since £(u) = {(w) — 1. For u < utp;, we
have ¢(w) = L(utp;) = £(u) + 1. By we have w(j) = u(i) < u(j) = utp(j).
Combining this with the property w(a) = u(a) = utp;(a) for a > j, we obtain utp; < w.
Permutations in the quantum part are all of length smaller than ¢(w), and hence are strictly
smaller than w with respect to the total order <. O

5.2. Proof of To achieve our aim, we first show that the pullback Schubert
classes £ admit exactly the same transition equations in the quantum cohomology QH*(X)
as that for G on the level of polynomials.

Proposition 5.7. With the same notation as in|Proposition 5.5, in QH*(X) we have
0=+ Y € Y au€ = Y qug

u<utp; u<dutp, u<qut;g
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Proof. Recall w = ut;; and that i is the last descent of w, so i <n —1 and z; = £% — %1,
We compare the two quantum Monk-Chevalley formulas

D R S E D DI S D DR S S

U<i_1Ulab SWoSn—1  u<!_jut., with k<n u<utan <! utanten <wosn—1
S; u utqp Ul Utagnt . u
f ! *€ - E g @+ E § Gk + E € M Qen — 5@,n—1Qn—1§ .
U< Ut SWOSH—1 u<lutor, with k<n U<Utan <} ulanten <woSn—1

The classical part follows from the same argument as in [Proposition 5.3 where the
constraint up; < wps,_1 is redundant by Again note that if c <i—1 <14 <k,
then u <?fl uter, implies u <;1 utq,. Therefore the difference of the sum involving quantum
parts in the two quantum products happens exactly when either k = ¢ in the first product
or ¢ = 1 in the second product. The part of kK = 7 in the first product is exactly the second
sum in the equation for £ in the statement. It remains to show that the rest is given by
c =1 part in £* x £ together with 9; ,—1¢,—1£", namely to show

(54) D &gy = > kg + > ghantin gy — 8 1qn—1€".

u<<dut; u<dut;p with k<n u<utan<gutantm§wosn,1

Denote by RHS (resp. LHS) the right (resp. left) hand side of the above equation to prove.

(1) Case i = n — 1. Then j = n, the sum in LHS is empty (otherwise we would have
u <?ut;, = ut,—1,, = w, contradicting v < w), and the first sum in RHS is empty
as well. The constraints

U < Ulgn <? Utgntin

imply @ = n — 1 by [Lemma 5.2( Otherwise, a < n — 1 = 4, then utq, (i) = u(i) <
u(a) = utgn(n) ). Then we have utqnte, = u, which automatically satisfies u <
WoSn_1 by Hence, RHS =0 + £“gp—1 — £“gn—1 = 0 = LHS.
(2) Case i <n —1. Then §;,—1 = 0.
For u <% ut;, on the LHS, we have k # j since u < ut;; = w. By
w(k) = u(k) < u(i) = w(y). Since i is the last descent, we have k < j. In particular,
k < n, thus the LHS is equal to the first sum of the RHS. It remains to show that
the second sum on the RHS is zero. Suppose we have u < utg, <;-1 Utgntin. By the
choice of 7, 7, u also has no descent after i. We also note that j is the minimal integer
greater than ¢ that satisfies u(i) < u(j). These two properties will be used over and
over again in the following argument. If i < a < n — 1, then u(n —1) € [u(a), u(n)],
contradicting with Therefore, either a =n —1ora <i. Ifa=n—1,
by we have u(n — 1) = utgn(n) < uten(i) = u(i), so j = n. Then
Utgn(n — 1) = u(n) = u(j) > u(i) = uten(i). Then utg,(n — 1) & [uten(n), uten (7)),
contradicting If @ = i, then from u < uty, and we have
j = n. Then utyn(n — 1) = u(n — 1) < u(i) = uten(n), Then uty,(n — 1) ¢
[utan(n), uten(1)], contradicting If a < ¢, then by we have
Utgn(n — 1) = u(n — 1) < u(a) = utgn(n), Then uty,(n — 1) € [uten(n), uten(i)],
contradicting O
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Proof of [Theorem 1.6, By (the proof of) [Theorem 1.2] the canonical ring isomorphism
\Ijq : QH*(Xa Z) — Z[IEl, T, ql, 7qn71] /(EA‘?7 Ty Ag—laEQ:%)-

satisfies W, () = [x1 + 22 + - + 2] for 1 <i < n — 1. Namely ¥,(£%) = [&%] holds for
all w € S,, with {(w) = 1 (which all satisfy w < wpsp_1).

By (2.1)), w < wsp—1 holds if and only if w(n) # 1. By [Proposition 5.7 [Lemma 5.4
and every & with w(n) # 1 can be written as a Z[g|-linear combination
of classes €Y with v < w and v(n) # 1. By [Proposition 5.3 &% can also be written
as exactly the same Z[g]-linear combination of & on the level of polynomials. Hence,
the statement follows immediately from the mathematical induction on the totally-ordered
subset ({w}w<wosn_15<)- O
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