陈兵龙  陈兵龙 Bing-Long Chen

 

 陈兵龙,1974年生于山西汾西。1992-2000年,就读于广州中山大学数学系,获博士学位。2000年于中山大学数学系任讲师,2004年晋升为教授。 2010年获国家杰出青年科学基金。2014年获聘教育部长江学者特聘教授。2016年获中组部万人计划领军人才。    

 

 

 

系别:数学系

电话:020-84113005

职称:教授

邮箱:mcscbl@mail.sysu.edu.cn

 

研究方向 :几何分析


研究成果:

Publication List

18. Compact Kähler manifolds homotopic to negatively curved Riemannian manifolds, Math. Ann.,  370(2018): 1477–1489, with Xiaokui Yang. 

     Abstract: In this paper, we show that any compact Kähler manifold homotopic to a compact Riemannian manifold with negative sectional curvature admits a Kähler– Einstein metric of general type. Moreover, we prove that, on a compact symplectic manifold X homotopic to a compact Riemannian manifold with negative sectional curvature, for any almost complex structure J compatible with the symplectic form, there is no non-constant J -holomorphic entire curve f : C X .

 17.  Euler characteristic numbers of spacelike manifolds, Asian J. Math. Vol. 21,     No. 3(2017), pp. 591-598. with Kun Zhang.  

   Abstract. In this note, we prove that if a compact even dimensional manifold Mn with negative sectional curvature is homotopic to some compact space-like manifold Nn, then the signed Euler characteristic number of M is positive.  We also show that the minimal volume conjecture of Gromov is true for all compact even dimensional space-like manifolds. 

16. Path-connectedness of the moduli spaces of metrics with positive isotropic curvature on four- manifolds. Math. Ann. 366 (2016), no. 1-2, 819-851, with Xian-Tao Huang. 

    Abstract. We prove the path connectedness of the moduli spaces of metrics with positive isotropic curvature on certain compact four-dimensional manifolds. 

15. Isometric embedding of negatively curved complete surfaces in Lorentz-Minkowski spaces, Pacif Jour. Math., vol. 276, no. 2, (2015), 347-367, with Le Yin.  

14. A conformally invariant classification theorem in four dimensions, Comm. Anal. Geom. 22 (2014), no. 5, 811-831, with Xi-Ping Zhu.

14. Self-pairings on supersingular elliptic curves with embedding degree three, Finite Fields Appl. 28 (2014), 79-93, with Zhao Chang-An.

13. Local pinching estimates in 3-dim Ricci flow, Math. Res. Lett. 20 (2013), no. 5, 845-855, with Xu Guoyi; Zhang Zhuhong.

12. Smoothing positive currents and the existence of Ka ̈hler-Einstein metrics, Sci. China Math. 55 (2012), no. 5, 893-912, Bing-Long Chen.

12. Complete classification of compact four-manifolds with positive isotropic curvature, J. Diff. Geom, volume 91 (2012), 41-80, with S.-H. Tang, X.-P. Zhu.

09. Local foliations and optimal regularity of Einstein spacetimes, J. Geom. Phys. 59 (2009), no. 7, 913-941, with Philippe G. LeFloch.

09. Strong uniqueness of the Ricci flow, J. Diff. Geom. 82 (2009), no. 2, 363-382, Bing-Long Chen.

08. Injectivity radius of Lorentzian manifolds, Comm. Math. Phys. 278 (2008), no. 3, 679-713, with Philippe G. LeFloch.

07. Uniqueness and pseudolocality theorems of mean curvature flow, Comm. Anal. Geom, 15(3),25-80, (2007), with Le Yin.

06. Ricci Flow with Surgery on Four-manifolds with Positive Isotropic Curvature, J. Diff. Geom., 74 (2006), 177-264, with Xi-Ping Zhu.

06. Uniqueness of the Ricci Flow on Complete Noncompact Manifolds, J. Diff. Geom., 74 (2006), 119-154, with Xi-Ping Zhu.

06. Sharp dimension estimates of holomorphic functions and rigidity, Trans. Amer. Math. Soc. 358(2006), no. 4, 1435-1454, with Xiao-Yong Fu, Le Yin, Xi-Ping Zhu.

04. A uniformization theorem of complete noncompact Kahler surfaces with positive bisectional curvature, J. Diff. Geom., 67, 519-570 (2004), with Siu-Hung Tang, Xi-Ping Zhu.

03. On complete noncompact Kahler manifolds with positive bisectional curvature, Math. Ann., 327, 1–23, (2003), with Xi-Ping Zhu.

03. Ricci flow on compact Kahler manifolds of positive bisectional curvature, C. R. Acad. Sci. Paris. Ser., I 337(2003), 781–784, with Huai-Dong Cao, Xi-Ping Zhu.

02. A gap theorem for complete noncompact manifolds with nonnegative curvature, Comm. Anal. Geom. 10(2002),217-239, with Xi-Ping Zhu.

00. Complete Riemannian manifolds with pointwise pinched curvature, Invent. Math., 140 (2000), 423–452, with Xi-Ping Zhu. 


学习经历:

1992.9-1996.7, 广州中山大学数学系本科应用数学专业 获学士学位;

1996.9--2000.7,广州中山大学数学系基础数学专业   获博士学位。


工作经历:

20002004  广州中山大学数学系讲师

2004    广州中山大学数学系教授