学术报告(何凌冰11.10)

发布人:杨晓静 发布日期:2019-11-04
活动时间
-
活动地址
数学学院 新数学楼415室
主讲人
何凌冰副教授 清华大学数学科学系

时间:11月10日 14:30-15:30

摘要:We consider the asymptotic expansion for the semi-classical limit (that is, the Fokker-Planck constant tends to zero) of the spatially homogeneous quantum Boltzmann equation. By exploring the structure of the Uehling-Uhlembeck operator, we first show that there exists a common lifespan such that the spatially homogeneous quantum Boltzmann equation admits an unique and non-negative solution with the initial data in the weighted Sobolev spaces. Then we prove the asymptotic expansion for the solutions in the limit process, which holds locally in time in Sobolev spaces. The convergence rate depends heavily on the particle interaction potential.