学术报告(翁健 1.11)

Zero-Knowledge Proof for Simultaneous Discrete Logarithms and its Applications

发布人:周妍 发布日期:2019-01-07
主题
Zero-Knowledge Proof for Simultaneous Discrete Logarithms and its Applications
活动时间
-
活动地址
新数学楼415室
主讲人
翁健 教授(暨南大学 )

摘要:The protocol for proving the equality of two discrete logarithms (EQDL) is a fundamental primitive in cryptography. The best existing EQDL protocol was introduced by Chaum and Pedersen in Crypto 1992, and it can be naturally extended for simultaneously proving the equality of n discrete logarithms. However, the Chaum–Pedersen protocol requires O(n) computational complexity and O(n) communication overhead. Somewhat surprisingly, Chaum–Pedersen protocol has never been improved in the past nearly twenty years. In this paper, we introduced a new technique named inhomogeneous commitment aggregation, and proposed a new EQDL protocol, which requires only O(\logn) computational complexity and O(1) communication overhead. Our protocol can benefit a variety of interesting cryptosystems, ranging from signatures and anonymous credential systems, to verifiable secret sharing and threshold cryptosystems. Based on our new protocol, we proposed two tightly secure signature schemes under the well-studied DDH problem and CDH problem respectively. We further proposed a rather efficient multi-signature scheme which can be used in block chain-based systems. Our proposed schemes gain an advantage over the state-of-the-art schemes in terms of both computational cost and communication overhead.

 

简介: 翁健,暨南大学信息科学技术学院/网络空间安全学院教授、执行院长,国家杰出青年基金获得者、珠江学者特聘教授。博士毕业于上海交通大学。在CRYPTO、EUROCRYPT、ASIACRYPT、TCC、PKC、CT-RSA、IEEE TPAMI、IEEE TDSC等国际会议和国际期刊上发表了80多篇论文。主持了包括国家重点研发计划课题、国家自然科学项目(杰青、重点、面上和青年项目)、教育部霍英东基金项目等项目。担任NSFC信息学部会评专家、教育部网络空间安全教学指导委员会委员、广东省第六届学位委员会工学II组学科评议组成员、暨南大学第十一届学位评定委员会委员兼工学分委会主席、信息安全国际会议SecureComm 2016大会主席、ISPEC 2011程序委员会主席和RFIDsec'13 Asia程序委员会主席,以及40多次国际会议程序委员会委员。曾入选教育部新世纪优秀人才支持计划、广东省“千百十工程”国家级培养对象、珠江学者特聘教授。曾获中国密码学会首届密码创新奖、2017年度全国网络安全优秀教师、第26届密码学与信息安全会议SCIS 2011最佳论文奖、第10届可证明安全国际会议ProvSec 2014最佳学生论文奖等奖励。

 

数学学院

2019年1月7日